
10 Exercises: Higgs boson decays

We consider in the following various two body decays of a Higgs boson.

10.1 Kinematics

Let the Higgs boson of mass MH and momentum q decay into particles A and B of masses m1 and

m2 and momenta p1 and p2 respectively: H(q) → A(p1) + B(p2). The decay rate summed over final

polarisations and colours is:
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the invariant matrix element squared, summed over final colours and polarisations. Mo-
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and the integral in eq. (10.1) can be done

independently of the decay channel. Using d3p2/2E2 = d4p2 δ
+(p22 −m2

2) and carrying out the d4p2

integration it comes out
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Going to the rest frame of the Higgs boson, q = (M, 0, 0, 0), one finds that the argument of the δ+

function reduces to (M2 − 2ME1 +m2
1 −m2

2) independent of the angles. Since all cases we consider

have m1 = m2 the expressions will simplify. Using p1 dp1 = E1 dE1 all integrations are easily done to

get:
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with m the common mass of the decay products.

10.2 Higgs decay into a fermion anti-fermion pair

This channel has only one diagram with the Higgs fermion-antifermion coupling, mf/v given in

eq. (8.29):

�

H(q)

f̄(p2)

f(p1)

75



The coresponding amplitude T is:

T = −i
mf

v
ū(p1) v(p2) (10.4)

leading to:

|T̄ |2 =
m2

f

v2
(N)

(

Tr [ 6p1 6p2]−m2
f Tr[1]

)

=
2m2

f M
2
H

v2

(

1−
4m2

f

M2
H

)

(N) . (10.5)

In the above result the colour factor N has been put in parentheses to indicate that, if the final fermions

are quarks then we keep this factor, while if they are leptons it should be ignored. Getting rid of the

vacuum expectation value v in favor of physical quantities via eq. (8.19), 1/v = e/(2 sin θ
W
M

W
) and

e2 = 4πα the decay rate is:
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where eq. (10.3) has been used.

10.3 Higgs decay into a W+ W− pair

Here again only one diagram contributes:
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The amplitude for this transition is:

T = i
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β (p2) , (10.7)

with ελα(p) the polarisation vector of a gauge boson and the coupling given in eq. (8.22). The sum

over polarisations is done using:
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so that:
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(
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Finally the decay rate is:
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10.4 Higgs decay in a γ γ pair

As seen in sec. 8.4 this transition goes via two types of loop diagrams, one involving fermions and the

other charged gauge bosons.

10.4.1 W boson loop

In the unitary gauge three types of diagrams contribute:
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All these diagrams have a common structure, namely theHWW vertex and the two adjacent W propa-

gators of momentum k and k+q respectively. Each amplitude Ti is written as Ti = T µ1 µ2

i ε∗µ1
(p1) ε

∗

µ2
(p2)

where we drop for simplicity the photon polarisation indices. Furthermore we introduce the tensor

T̃ µ1 µ2

i :

T µ1 µ2

i =

∫
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(2π)n
T̃ µ1 µ2

i ,

with T̃ µ1 µ2

i = Rα1 α2
Mµ1 µ2 α1 α2

i , Rα1 α2
containing the part common to all three digrams. Applying
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the Feynman rules, using the unitary gauge for the W propagators, it comes out:
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1 (µ1 ↔ µ2, p1 ↔ p2) (10.12)

Mµ1 µ2 α1 α2

3 = i e2 [gα1 µ1 gα2 µ2 + gα1 µ2 gα2 µ1 − 2 gµ1 µ2 gα1 α2 ] , (10.13)

and for the common structure of the amplitudes:
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The quantities D0 and D3 are the denominators of propagators,

D0 = k2 −M2
W

, D3 = (k + q)2 −M2
W

, (10.15)

and we will need later,

D1 = (k + p1)
2 −M2

W
, D2 = (k + p2)
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W

. (10.16)

The diagrams T1, T2 et T3 are highly divergent in the ultraviolet region:

T1 etT2 ≃
∫

d4k k8

k6
≃

∫

dk k5

T3 ≃
∫

d4k k6

k6
≃

∫

dk k3 ,

but working in n space-time dimensions regularizes the divergencies. Rather than evaluating these

integrals by brute force we try to arrange the terms to make possible cancellations obvious in the

integrands. One thus defines:

T µ1 µ2 = T µ1 µ2

1 + T µ1 µ2

2 + T µ1 µ2

3
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∫
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After integration on the loop momentum k the tensor T µ1 µ2 depends only on the external momenta

p1, p2 and it can be parameterised as:

T µ1 µ2 =
A

p1.p2
pµ2

1 pµ1

2 +
B

p1.p2
pµ1

1 pµ2

2 + C gµ1 µ2 . (10.18)
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The aim is to calculate the expressions A,B and C. For this purpose we construct the following

scalars:

gµ1 µ2
T µ1 µ2 = A+B + nC

p1µ2
p2µ1

T µ1 µ2 = p1.p2 (B + C)

p1µ1
p2µ2

T µ1 µ2 = p1.p2 (A+ C) ,

where the property gµ1 µ2
gµ1 µ2 = n has been used since we work in n dimensions. The system of

equations is easily solved to find:
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p1.p2
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p1.p2
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)

(10.19)

B =
p1µ2

p2µ1

p1.p2
T µ1 µ2 − C (10.20)

A =
p1µ1

p2µ2

p1.p2
T µ1 µ2 − C . (10.21)

The various contractions of the tensor T µ1 µ2 are calculated with the help of a form program16,17. By

reconstructing systematically the quantities D0, · · · ,D3 in the numerators and cancelling them with

the denominators, we get rid of the k dependence in the numerators so that only scalar integrals have

to be evaluated. There are two 3-point integrals:
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∫
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1
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1
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1
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.

16
For an on line documentation on form see http://www.nikhef.nl/~form/maindir/documentation/reference/online/

17
The code for the evaluation of A,B and C is found at https://lectures.lapth.cnrs.fr/standard_model/cours/hgaga.frm
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Note that the last two sets of integrals would be ultraviolet divergent in 4 dimensions, but, working in

n dimensions, they are regular and we can do translations on the loop momentum to evaluate them.

For example:

I1 =

∫
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(2π)n
1

(k + p1)2 −M2
W

+ i ǫ
=

∫

dnk
′

(2π)n
1
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′

= k + p1 , (10.22)

then I1 = I0. In the same way one shows that:

I3 = I2 = I1 = I0

All 2-point integrals can be written in the following form:
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∫

dnk

(2π)n
1
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W
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, (10.23)

is reduced to:

J2 =

∫ 1

0
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(2π)n
1
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, (10.24)

after introduction of the Feynman variable x, with R2 = M2
W

− p2 x (1 − x). Doing the change of

variable k to l = k + p x and using the usual formulae (see sec. 9.1) one obtains:

J2 =
i

(4π)n/2

∫ 1

0
dx
(
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)

−2+n/2 Γ(2− n/2)

Γ(2)
. (10.25)

Introducing ε through n = 4− 2 ε, and expanding around ε = 0, it comes out:

J2 =
i

(4π)2−ε

Γ(1 + ε)

ε

(

1− εĨ(p2)
)

, (10.26)

with:

Ĩ(p2) =

∫ 1

0
dx ln

(

M2
W

− p2 x (1− x)− i ǫ
)

. (10.27)

The pole in ε is the consequence of the ultraviolet divergence of the 2-point functions. It turns out

that, in our calculation, the 2-point integrals are all multiplied by ε which allows us to take the ε → 0

limit to find finally:

ε J2 =
i

(4π)2
. (10.28)

For the 3-point integrals, both I013 et I023 can be written as:
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∫
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W
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1
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with r1 = p1 and r2 = p2 for I013, and r1 = p2 et r2 = p1 for I023. Introducing the Feynman parameters

and using l = k + (r2 (1− x)− r1 x) y rather than k as integration variable one finds:

J3 = 2

∫ 1

0
y dy

∫ 1

0
dx

∫

dnl

(2π)n
1

(l2 −R2 + i ǫ)3
, (10.30)
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with R2 = M2
W

− y2 x (1− x) q2 and q = p1 + p2 = r1 + r2. Integrating on l yields:

J3 = −
i

(4π)n/2
Γ
(

3−
n

2

)

∫ 1

0
y dy

∫ 1

0
dx (R2 − i ǫ)−3+n/2 , (10.31)

which is regular. Taking n = 4 and doing the y integration J3 can be written as:

J3 = −
i

(4π)2
1

M2
W

J

(

M2
W

q2

)

, (10.32)

with the function J defined in eq. (9.16) of the previous section. The result depends only on r1 + r2

which implies I013 = I023.

After contraction of the tensor T µ1 µ2 with the photons polarisation vectors we obtain:

TW = T µ1 µ2 ε∗µ1
(p1) ε

∗

µ2
(p2)

=

(

C gµ1 µ2 +
A

p1.p2
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1 pµ2

2

)
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∗
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(p2) (10.33)

one observes that the B term has disappeared as it is multiplied by 0!. The form code gives A = −C

and:

C =
i

(4π)2

(

e2
eM

W

sin(θ
W
)

) [
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1

z
W

+ J(z
W
)

(

−12 +
6

z
W
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(10.34)

with z
W

= M2
W
/M2

H . Putting everything together it comes out:
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(4π)2

(
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)
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)

(
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z
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gµ1 µ2 −
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2

p1.p2

)

× ε∗µ1
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∗
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= i
α
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e

sin(θ
W
)
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H

M
W
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(
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W
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)

(

gµ1 µ2 −
2 pµ1
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2
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)
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∗

µ2
(p2) (10.35)

where:

G(z) = [6 z + 1 + 6J (z) (1− 2 z)]

Some remarks are in order.

1. All ultraviolet divergences have disappeared: it was necessary to go to n dimensions in the

intermediate steps of the calculation to give a mathematical meaning to individual integrals and

allow for the momentum translations in the loops, but after combining all terms one takes the

limit to 4 dimensions since the final result is regular;

2. T µ1 µ2 is transverse, which means p1µ1
T µ1 µ2 = p2µ2

T µ1 µ2 =0 .
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10.4.2 Fermion loops

This part is very similar to the calculation of Higgs boson production via gluon-gluon fusion in sec. 9

and the result eq. (9.21) can be used with appropriate changes. First the strong coupling is replaced

by eQf and αs then becomes αQ2
f with Qf = −1, 2/3 or −1/3. Since the photons are colour neutral

the colour factor Tr
[

T aT b
]

= δab/2 becomes 1 (see eq. (9.6)). The result is:

Tf = −i
αQ2

f e

2π sin θ
W

M2
H

M
W

F(zf )

(

gµ1 µ2 −
2 pµ1

1 pµ2

2

M2
H

)

ε∗µ1
(p1) ε

∗

µ2
(p2) , (10.36)

with zf = m2
f/M

2
H . Eventhough heavy fermions only will contribute (Higgs coupling proportional to

the fermion mass) it is necessary to recall that we have to sum over all fermions. The function F is

defined in eq. (9.19) and we recall it here:

F(z) = [2 z + (1− 4 z) J (z)] .

The amplitude for the decay of a Higgs boson into two photons is then:

Tf = −i
α e

2π sin θ
W

M2
H

M
W

(

gµ1 µ2 −
2 pµ1

1 pµ2

2

M2
H

)
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(p1) ε

∗

µ2
(p2)

×

(

∑

l

Q2
l F

(

m2
l

M2
H

)

+N
∑

q

Q2
q F

(

m2
q

M2
H

))

(10.37)

where the sum over l stands for leptons and q for quarks. In the latter case an extra factor N obviously

appears from the colour sum in the loop.

10.5 Final result

The final amplitude will be the sum of the amplitudes Tf and TW . To calculate its square one has to

sum on the photon polarisation and evaluate the expression:

S =
∑

λ1

∑

λ2

ελ1∗

µ1
(p1) ε

λ2∗

µ2
(p2) ε

λ1

ν1 (p1) ε
λ2

ν2 (p2)

(

gµ1 µ2 −
2 pµ2

1 pµ1

2

M2
H

) (

gν1 ν2 −
2 pν21 pν12
M2

H

)

=

(

gµ1 µ2 −
2 pµ1

1 pµ2

2

M2
H

) (

gµ1 µ2
−

2 p1µ1
p2µ2

M2
H

)

= 2 (10.38)

thus:

|TW + Tf |
2 =

α2 e2

8π2 sin θ
W

M4
H

M2
W

|Y |2 (10.39)

82



with:

Y = G

(

M2
W

M2
H

)

− 2
∑

l

F

(

m2
l

M2
H

)

− 2N
∑

q

Q2
q F

(

m2
q

M2
H

)

Using eq. (10.3), the decay rate of a Higgs boson in two photons is:

ΓH→γ γ =
α3

32π2 sin2(θ
W
)

M3
H

M2
W

|Y |2 (10.40)
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