11 Family mixing and the Kobayashi-Maskawa matrix

The above discussion has been considerably simplified since it completely ignored mixing between the
three fermion families. For example, if the coupling u — d+ W™ is allowed the couplings u — s+ W™

and u — b+ W™ are not possible in the model. However it turns out that the transitions

d S b

u u u

are observed with the hierarchy as indicated. They can be summarised by defining a transition u — d’
with d' a linear superposition of the d,s,b quarks. The quark states (u;) and (d;) with i = 1,2,3
for the three families constructed in the previous sections are eigenstates of the mass matrix but the
charged electroweak transition is not diagonal in these states but rather it is diagonal in a (u}) , (d})
basis called the flavour basis. The two bases are related as follows:

u d u d
R Lo/ R L A R,/ R R j/
Ui, = Sz'j U dZL - Sz'j djL’ Ui = Sij Ui dZR - Sij de’

i,j=1,2,3. (11.1)

Eq. (11.1) can be written in a matrix form u, = S“2u’ and similarly for the right-handed up sec-
tor as well as the left-handed and right-handed down sectors. As will be shown later the matrices
S“L,SYr,--. are unitary. The quark sector of the SU(2); ® U(1)y lagrangian is written in general'®

(see eq. (5.22))

u/

EF::E:QQLd&)iﬁ%L<(£L> + > Ul i Dy, v, + Y i Py, di (11.2)
i 'L i i
so that the electroweak interactions are diagonal in the “primed” flavour basis. After symmetry
breaking, the most general Yukawa lagrangian takes the form in the “primed” basis, (see eqgs. (8.26),

(8.27)), ignoring for the moment the H boson couplings to the fermions

v - o d
£Y = — ﬁ Z(U,ZL Cij u;R + d;L Cij d./]R + hC)
1j
- - L @, Cc,u, +d,Cyd, + he) (11.3)

V2

8We could in fact identify flavour and mass eigenstates of the up sector and take for simplicity Sz = S* = 1.
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where the complex, 3 x 3, C,, C; matrices are the generalized Yukawa couplings. Including the
common normalisation factor v/v/2 with the C, and Cy matrices, the most general such matrices can

be written as a product :
v v

—C, =M, T,, —
\/5 u u u \/5
with M, a hermitian matrix (M, = M!) and T, a unitary matrix (T,! = TI). The hermitian

Cy =M, Ty (11.4)

matrix can be diagonalized by a unitary transformation, M, = S, 'm,S, = SLmuSu where m,, is
diagonal with real eigenvalues, and similarly for the d sector. The Yukawa lagrangian reduces to the

very simple diagonal form :

Ly = —u,m,u, — U

= —umyu — dmgd (11.5)

when written in terms of the mass eigenstate basis related to the original one by :

u = S, u’L7 u, =S, T, u’R
d = S, d’L, d, =8; Ty d;,{, (11.6)
which defines the matrices S“z, S“r, --- introduced above. We remark that, as advertized before, the

transformation from the primed basis to the unprimed one is unitary since such are the S, T matrices.
The components of u in which the mass matrix is diagonal are, by definition, the “physical” quark
fields (u,c,t) of definite mass eigenstate (idem for the d sector). The same is obviously true for the
Higgs couplings which are diagonal in the u and d bases. Having achieved a simple form for the
Yukawa lagrangian we re-write now the gauge part L in terms of these physical fields. Singling out

the neutral current interactions we have

Lp(neutral current) = Z(u_;L i D, v, + u_;R i Doy, uiy) + d sector
i
= (W, ip, v, +d,ip,, ) + d sector, (11.7)

in which we keep only the diagonal (in SU(2)) part of the operator J?,. Because of the unitarity
of the transformations within the left-handed bases and the right-handed bases the above lagrangian

immediately reduces itself to

Lp(neutral current) = w, i p,, u, + u,ip,, u,

+ d,iPp,, d, + u,ip,, u,. (11.8)
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This equation is the basis for the slogan that, in the Standard Model and in agreement with experi-
ments, there is “no flavour-changing neutral current”, in other words the neutral current is diagonal
in flavour space as well as in the mass eigenstates : it does not induce transition between the ¢ quark
and the u quark or between the b quark and the d quark for example. The case of the charged current
pieces is more involved because it couples the up sector and the down sector which do not transform
with the same unitary matrices and, as a consequence, there is no reason for the charged current
interactions to be diagonal in the basis which diagonalises the mass matrix. Indeed we have, from
egs. (11.2), (5.43):

e

Lr(quark charged current) = N W, W a4 EL W)
w
e . i} B
= m (uL W S. Sil dL + dL S4 SL W uL) (119)
w

where the last equation is obtained from eq. (11.6). The matrix CKM = SuSIl is the famous
Cabibbo-Kobayashi-Maskawa matrix which parameterises the flavour changing content of charged
current transitions, i.e transitions between left-handed up spinors (u,, c,, t,) of definite mass to

down spinors (d, , s, , b, ) of definite mass. Its matrix elements are often written as

Vud Vus Vub
CKM = Vea Ves Ve . (11.10)
Via Vis V

The matrix CKM is unitary, since both S,;, SE are such, and its matrix elements must satisfy relations
of type Vs Vg + V3 Vea + VigVia = 0 or V5 Vi + V3 Ve + V3 Vi, = 1. The determination of the Vj; is a
very active area of particle physics phenomenology at present and it is one of the aims of the LHCb
collaboration at CERN and Belle II at KEK in Japan. If V4 is mainly constrained from nuclear 3
decays the others are essentially determind from K decays and heavy flavour decays. The 2018 edition

of the particle data group'® quotes the following values

|Via| = 0.97446 4 0.00010, |V, = 0.22452 +0.00044,  |Viyp| = (3.65 £ 0.12)107%
Veg| = 0.22438 + 0.00044, [V,| = 0.9735970-00010 Veo| = (4.214 £0.076)107%  (11.11)
[Vial = (8.96702)107%, Vi = (4.133 £0.074)107%2, V3| = 0.999105 + 0.000032

The CKM matrix generalizes to three families the Cabibbo angle, sinf, = A ~ .22 ~ V,,; introduced
long ago to deal with the mixing of two families. The Cabibbo-Kobayashi-Maskawa quark mixing

9 M. Tanabashi et. al. (Particle Data Group), Phys. Rev. D98 (2018) 030001 (http://pdg.1bl.gov).
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matrix is a 3 x 3 unitary matrix and from its definition?® it depends on nine parameters which can
be chosen as three real parameters and six phases. Changing the phase of u;;, and d;;, respectively
by € and €% the CKM matrix elements (SUSL)M becomes e"(%—%)(susg)ij. The five arbitrary
phase differences can be used to absorb as many phases of the CKM matrix leaving one CP violating
phase. One should of course shift the phases of the right-handed fields and the left-handed ones by
the same amount to leave the mass terms eq. (11.5) invariant. The independent parameters of the
CKM matrix are chosen as three angles (¢;; = cos6;;, s;; = sinf;; with 0 < 6;; < 7/2) and a phase

d (0 < 9 < 27) and one writes:

1 0 0 C13 0 813e_i6 cl12 si2 0
CKM = 0 C23 5923 . 0 1 0 . —S812 C12 0
0 —S823 (€23 —8136i6 0 C13 0 0 1
C12€13 512€13 s13e~ %
= —S12C23 — C12823813€"  ClaCo3 — S12823513€0  sazciz | (11.12)
S$12823 — C12C23513€°  —C12523 — S12¢23513€"°  Co3013

This last form is not very illuminating and in view of the relative smallness of |s13| ~ |Vy;s| ~ 3.57 10793,
|sag] ~ |Vip| = 4.11 10792 the approximation c13 ~ co3 ~ 1 is justified. With |sia| &~ |V, = 0.225,

Wolfenstein introduced the convenient and often used parameterisation (see the PDG review!?):

1—\?/2 A AX3(p — in)
CKM = - 1—22)/2 AN , (11.13)
AN(1—p—in) —AN? 1

with

s12 ~ A = 0.22453 +0.00044, A = 0.836 £ 0.0015
p=0.12210018 n = 0.35510912 (11.14)

This parameterisation shows that the charged current transition, for example, of a v quark to d, s,b
quarks takes place with amplitudes which are proportional to (1 —A2/2), X, AX3(p — in) respectively.
The phase factor 7, or equivalently ¢ in eq. (11.12), is responsible for CP violation in the Standard
Model (see appendix B, in particular B.3). The measurement of this CP violating parameter, in kaon
and B meson systems, for example, is of great theoretical interest in order to understand the origin
of CP violation and of great practical importance since it may be related to the origin of the baryon

asymmetry in the universe.

20 A unitary matrix U can be written U = exp(i Y, *T®), with T* the generators of the SU(3) group fora = 1,--- ,8
and T° = 1. The a® are real parameters. A matrix U parameterised as in eq. (11.12) is often written U = Ua3U13(5)Un2.
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A very important point is to check experimentally the unitarity of the CKM matrix : indeed any
violation of one of the unitarity relations may indicate the existence of a new quark or a new family

of quarks. Present data are consistent with the unitarity of the CKM matrix within a 3% accuracy.
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