
12 Neutrinos and the Pontecorvo-Maki-Nakagawa-Sakata matrix

The absence of a CKM mixing matrix for the leptonic sector requires a comment. We assumed that

the right-handed neutrinos decouple from the observed world. As a consequence, as mentioned above,

the neutrinos νe, νµ, ντ remain massless even after spontaneous symmetry breaking since there are,

in the lagrangian density, no terms coupling left-handed and right-handed fields like in eq. (8.26).

Therefore no mass matrix can be constructed from which the “physical” neutrino states are defined.

When studying the weak-current transition from charged leptons to neutrinos we are thus free to

define the neutrino physical states as those for which the charged weak current is diagonal in lepton

flavour.

However, recent experiments have shown that neutrinos oscillate i.e. they change flavour when prop-

agating from their emission point to their detection point. This can be explained if neutrinos are

massive. If one follows the same procedure as for the quarks one introduces right-handed fields and

this leads to Dirac type massive neutrinos. There is another possibility which relies on the fact that,

being neutral, neutrinos can be their own antiparticles and this leads to Majorana type neutrinos. In

the first case the total lepton number L = Le + Lµ + Lτ is conserved, while, in the latter case, it is

not. In this section, we deal with Dirac neutrinos, the Majorana case being treated in sec. 15.

We assume that, like quarks, the neutrinos are of Dirac type with both left-handed and right-handed

components. In the flavour basis, besides the triplet of left-handed fields ν′
L
one introduces a triplet

of right-handed fields ν′
R
, singlets under SU(2)L,

ν
′

L
=





νeL
νµL

ντL



 and ν
′

R
=





νeR
νµR

ντR





.

(12.1)

In this notation νeL is the neutrino produced by an electron in a charged current interaction and

similarly for νµL
and ντL . Assuming the SU(2)L ⊗ U(1)Y symmetry holds true, the right handed

neutrinos cannot be produced or interact in reactions mediated by gauge bosons: they do not couple

to the SU(2)L gauge bosons nor to the U(1)Y boson since being neutral yνR = 2eνR = 0, thus they

do not couple to W±, Z or γ gauge bosons. They can be produced in Higgs decays but, given that

the Higgs couplings are proportional to the masses, it is fair to assert that the production rate via

this channel is not measurable. Their only effect is to give masses to neutrinos. The charged current
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transition (eq. (5.28)) is given by the term (g/
√
2) (e

L
6W ν′

L
+ ν′

L
6W ∗

e
L
), diagonal in flavour where

e
L
=





e
L

µ
L

τ
L



 (12.2)

is the triplet of left-handed charged leptons. We emphasize that e
L
, µ

L
, τ

L
are the mass eigenstates

of the charged leptons. In analogy with the case of quarks, after symmetry breaking, the Dirac mass

term for neutrinos is of the form

LYD
= − v√

2
ν′
L
Cν ν

′
R
+ h.c. (12.3)

Following the steps leading from eq. (11.3) to eq. (11.6), we introduce the notation (Mν hermitian,

Tν unitary),
v√
2
Cν = Mν Tν , (12.4)

and diagonalize the hermitian matrix by the transformation Mν = S
−1
ν mνSν = S

†
νmνSν (Sν unitary).

Defining

ν
L
= Sν ν

′
L

and ν
R
= Sν Tν ν

′
R
, (12.5)

the Yukawa lagrangian becomes diagonal,

⇒ LYD
= − ν

L
mν νR

− ν
R
mν νL

= −ν mν ν (12.6)

with m1,m2,m3 the three real eigenvalues of mν and ν1, ν2, ν3 the three neutrino mass eigenstates

ν = ν
L
+ ν

R
=





ν1
ν2
ν3



 . (12.7)

Then, using eq. (12.5), the charged current transition is written

L(leptonic charged current) =
g√
2
(e

L
6W ν

′
L
+ ν′

L
6W ∗

e
L
)

=
e√

2 sin θ
W

(e
L
6W S

†
ν νL + ν

L
Sν 6W ∗

e
L
). (12.8)

Similarly to the CKM mixing matrix one introduces the Pontecorvo-Maki-Nakagawa-Sakata matrix21

PMNS = S
†
ν the matrix elements of which are often written as22:

PMNS =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



 (12.9)

21In 1952, B. Pontevorvo was the first to mention the possibility of νe − νe oscillations. In 1962, the year when νµ
was discovered, Ziro Maki, Masami Nakagawa and Shoichi Sakata, assuming two kinds of neutrinos proposed a ”particle
mixture theory of neutrino”, Prog. Theor. Physics 28 (1962), 870.

22The PMNS matrix appears simpler than the CKM one since the gauge interaction eq. (12.8) is written directly
in terms of the charged lepton mass eigenstates.
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where e, µ, τ refer to flavour states and 1, 2, 3 to mass eigenstates.

It is easy to check that all terms in the lagrangian density are invariant under the global phase change

of all fields

e
L
→ ei λ e

L
, ν

L
→ ei λ ν

L
, ν

R
→ ei λ ν

R
. (12.10)

To this invariance corresponds the conservation of the total lepton number defined as L =
∑

α Lα, α =

e, µ, τ . It follows that such transitions as µ− → e−+γ or µ− → e−+e++e− are allowed in the model.

A recent fit to available data shows that the mixing pattern is quite different from that of the quark23

|Ue1| = 0.800 → 0.844, |Ue2| = 0.515 → 0.581, |Ue3| = 0.139 → 0.155

|Uµ1| = 0.229 → 0.516, |Uµ2| = 0.438 → 0.699, |Uµ3| = 0.614 → 0.790

|Uτ1| = 0.249 → 0.528, |Uτ2| = 0.462 → 0.715, |Uτ3| = 0.595 → 0.776. (12.11)

As for quarks, no satisfactory model can account for this mixing pattern.

The phenomenology of neutrino mixing is discussed below in the framework of Dirac neutrinos. There

are several recent reviews on this topic, in particular by Nakamura and Petcov24 and by Giganti,

Lavignac and Zito25. The case of Majorana neutrinos is discussed in sec. 15 and by Bilenky and

Petcov26.

12.1 Neutrino survival and oscillation

The space-time evolution of a state of given mass is (~ = c = 1)

|νi(x) >= e−i(E t−~k ~x)|νi > . (12.12)

As will be seen below it is justified to assume the neutrinos to be ultrarelativistic particles so that

E ≈ k +m2
i /2 k and the equation becomes (x denotes now the length travelled by the neutrino)

|νi(x) >= e−ix (m2

i /2 k)|νi > . (12.13)

23I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, T. Schwetz, JHEP 1701 (2017) 087,
arXiv:1611.01514 [hep-ph]. The variation of the coefficients is given for a 3 σ range.

24K. Nakamura, S.T. Petcov, in Particle Data Group (PDG), M. Tanabashi et. al., Phys. Rev. D98 (2018) 030001
(http://pdg.lbl.gov).

25C. Giganti, S. Lavignac, M. Zito, Prog. Part. Nucl. Phys. 98 (2018) 1, arXiv:1710.00715 [hep-ex].
26S.M. Bilenky, S.T. Petcov, Rev. Mod. Phys. 59 (1987) 671.
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We consider a neutrino of type α produced in a charged current interaction with momentum k. It is

a coherent superposition of neutrino states of definite mass27,

|να >=
∑

i

U∗
αi|νi >, α = e, µ, τ : i = 1, 2, 3. (12.14)

The space-time evolution of this neutrino is given at a later time t and at a distance x = t by

|να(x) >=
∑

i

U∗
αi e

−ix (m2

i /2 k)|νi > . (12.15)

The probability for this neutrino, initially of flavour α, to be observed as a neutrino of flavour β at

the distance x from the emission point is

P (να → νβ) = | < νβ|να(x) > |2 =
∑

i,j

U∗
αiUαjUβiU

∗
βj exp

(

i x
δm2

ji

2k

)

, (12.16)

where the symbol δm2
ji = m2

j −m2
i . Separating the real and imaginary part of the phase factor and

using the unitarity of the U matrix (U∗
αiUβi = δαβ) this expression can be written as28:

P (να → νβ) = δαβ − 4
∑

i>j

Re(U∗
αiUαjUβiU

∗
βj) sin

2

(

x
δm2

ij

4k

)

+ 2
∑

i>j

Im(U∗
αiUαjUβiU

∗
βj) sin

(

x
δm2

ij

2k

)

,

(12.17)

For the time reversed transition P (νβ → να) permuting α and β in eq. (12.16) is equivalent to

permuting i and j so that it comes out

P (νβ → να) = δαβ − 4
∑

i>j

Re(U∗
αiUαjUβiU

∗
βj) sin

2

(

x
δm2

ij

4k

)

− 2
∑

i>j

Im(U∗
αiUαjUβiU

∗
βj) sin

(

x
δm2

ij

2k

)

,

(12.18)

which exhibits the violation of T invariance due to the phase factor in the PMNS matrix. One finds

the same result, eq. (12.18), for P (να → νβ), exhibiting this time the CP violation of the model.

Then CPT is conserved because P (νβ → να) = P (να → νβ). Finally one has the sum rule, valid in

the three family model

1 =
∑

νβ=νe,νµ,ντ

P (να → νβ) =
∑

νβ=νe,νµ,ντ

P (να → νβ), for any να, να. (12.19)

It is important to remark that in case of a disappearance probability, P (να → να), the last term

in the eqs. (12.17) or (12.18) disappears since terms such as U∗
αiUαjUαiU

∗
αj are real and therefore a

disappearance probability cannot depend on the imaginary part of the PMNS matrix elements.

27From eqs. (12.5), (12.9) a flavour field ναL
is related to the fields νiL of given masses by ναL

=
∑

i
(S†)αiνiL =

∑

i
UαiνiL , but the state |να > is created by the field ναL

, hence eq. (12.14).
28We use cos

(

xδm2

ij/2k
)

= 1− 2 sin2
(

x δm2

ij/4k
)

, the factor 1 then leading to the δαβ term.
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12.2 Summary of results

It turns out, as will be discussed below, that the last factor in eqs. (12.17) and (12.18) is small. Then,

oscillations, as a function of x, in the probability for the neutrino to change flavour (or to remain in

the same flavour) are essentially induced by the factors sin2(x δm2
ij/4k). For the oscillation to be seen

this factor should be of O(1). To be quantitative, we have to inject the ~ and c factors to make the

argument of the sin2 factor dimensionless. One finds29

δm2
ij x

4 k
⇒ 1.27 10−18

δm2
ij [GeV2] x [km]

k [GeV]
= 1.27

δm2
ij [eV

2] x [km]

k [GeV]
= 1.27

δm2
ij [eV

2] x [m]

k [MeV]
, (12.20)

where we have given this expression in terms of the units commonly used. One defines the oscillation

length associated to a given mass squared difference by the condition

δm2
ij x

4 k
= π ⇒ x [m] = 2.47

k [MeV]

δm2
ij [eV

2]
or x [km] = 2.47

k [GeV]

δm2
ij [eV

2]
. (12.21)

Conversely, we can use this formula to estimate the sensitivity of typical neutrino experiments to mass

squared differences as shown in the table below. In some experimental conditions, a factor (x δm2
ij/4k)

Source type of ν k [GeV] x [km] <δm2> [eV2]

Reactors (short baseline) νe 10−3 1 10
−3

Reactors (long baseline) νe 10−3 100 10
−5

Accelerators (short baseline) νµ, νµ 1 1 1

Accelerators (long baseline) νµ, νµ 1 103 10
−3

Atmospheric νe, νe, νµ, νµ 1 104 10
−4

Sun νe 10−2 1.5 108 10
−10

Table 1: Sensitivity in terms of δm2
ij of the different types of neutrino experiments characterised by

the energy k of the neutrino and the distance x between the ν source and the detector.

may remain small and its contribution to the oscillation pattern becomes negligible. In other cases on

the contrary, it stays very large and the oscillating sin2 term averages out to 1/2. These facts simplify

the analysis of the oscillations as will be seen below in the discussion of several experiments. We give

here the values of the parameters, with the PMNS matrix written as in eq. (11.12), obtained from of

29In eq. (12.12) the dimensionless phase should be −i(Et− ~k ~x)/~, with the energy E measured in GeV and k in

GeV/c as appropriate for neutrino experiments. It can be written −i(Ect− ~k ~x)/(~c), with both E and k as well
as the mass measured in GeV and [ct] = [x] in km if c is expressed in km/sec. We have (see the PDG tables)
~c = 197.3267 10−21 GeV·km; using the approximate form eq. (12.13), the oscillation factor in eq. (12.17) becomes
δm2

ij [GeV2] x [km]/(4 k [GeV] ~c[GeV·km]) = 1.27 10−18δm2

ij [GeV2] x [km]/k [GeV].
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a recent global analysis of data30

δm2
21 = (6.92 − 7.91) 10−5 eV2, δm2

31 = (2.392 − 2.594) 10−3 eV2

sin2 θ12 = 0.265 − 0.346, sin2 θ23 = 0.430 − 0.602, sin2 θ13 = 0.0190 − 0.0239. (12.22)

By convention the mass m2 is chosen larger than m1 but there are two possibilities for m3: either

m1 < m2 < m3, labeled normal hierarchy, or m3 < m1 < m2, labeled inverted hierarchy. The above

results are obtained assuming a normal hierarchy. In the other case the values of the parameters

are very similar except of course for the sign of δm2
3i. For example, the best fit value for δm2

32 is

2.418 10−3 eV2 (normal hierarchy) and δm2
32 = −2.478 10−3 eV2 (inverted hierarchy). There are two

independent δm2
ij and given the relative smallness of δm2

21, one is justified to take |δm2
32| ≈ |δm2

31|.
Concerning the mass hierarchy and the CP violating phase δ, they are difficult to extract because, as

will be seen, they enter the observables with small coefficients. One notes that the angle θ13 is much

smaller than the other mixing angles and small θ13 approximations will often be used. At present

fits to data seem to indicate a value δ ≈ 3π/2, with large error bars, for both mass hierarchies and a

preference for normal hierarchy.

One does not know the absolute scale of neutrino masses. If we assume m1 ≪ m2 one gets m2 ≈
8.6 10−3 eV and m3 ≈ 5.1 10−2 eV, while in the inverted hierarchy case, assuming m3 ≪ m1 the result

is m1 ≈ m2 ≈ 5.1 10−2 eV. One way to experimentally access the mass scale of neutrinos is through

nuclear β decay which allows to give a direct limit on the νe mass. For these purposes, several past

and ongoing experiments study tritium decay31, 3H → 3He+ e− + νe. The electron energy spectrum

is sensitive to the neutrino mass near the upper end of the spectrum. Denoting E0 the total energy

release in the decay, the maximum value of the electron energy is E < E0 ≈ 18 keV, if the neutrino

is massless. A non vanishing neutrino mass will slightly reduce the bound to E < E0 −mνe and will

modify the shape of the spectrum near this end point of the distribution. Near the end point the

electron spectrum behaves as

dN/dE ∝ Eνekνe = (E0 −E)((E0 − E)2 −m2
νe)

1/2, (12.23)

which has a non-zero derivative, in fact −∞, if the neutrino is massive. The effect is very hard to

measure since the rate of energetic electrons is very low. A limit established some years ago32 was

30F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Prog. Part. Nucl. Phys. 102 (2018) 48, arXiv:1804.09678 [hep-
ph]; see also P.F. de Salas, S. Gariazzo, O. Mena, C.A. Ternes, M. Tórtola, Front. Astron. Space Sci. 5 (2018) 36;
arXiv:1806.11051 [hep-ph]; P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tórtola, J.W.F. Valle, Phys. Lett. B782 (2018)
633, arXiv:1708.01186 [hep-ph]; NuFIT webpage, http://www.nu-fit.org/.

31G. Drexlin, V. Hannen, S. Mertens, and C. Weinheimer, Adv.High Energy Phys. (2013) 293986, arXiv:1307.0101.
32Troitzk Collaboration, V.N. Aseev et al. Phys. Rev D84 (2011) 112003.
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mνe < 2.05 eV at 95% c.l., quite a bit higher than the tentative scales suggested above. The KATRIN

experiment which started operation in 2018, in Karlsruhe, quotes now an upper limit of 1.1 eV at

90% c.l.33. By 2024 the collaboration expects to reach 0.2 eV (90% c.l.) or 0.35 eV (5 σ). Finally

astrophysical and cosmological limits are available on the sum of neutrino masses and a recent result

reported by the Planck collaboration is34

∑

j

mj < .12 eV, (12.24)

but this result is model dependent. In the following we use for the PMNS matrix, eq. (12.9), the

representation, eq. (11.12).

12.3 Survival probabilities in vacuum

Since, in experiments, both survival and oscillation probabilities can be measured we quote below

the general form of these expressions for 3 flavoured neutrinos35 In the analysis of results it will turn

out that different approximations can be made, depending on the experimental set-up, which simplify

considerably the general expressions. The reduced forms will be easily obtained from the results given

in this section and the next. The simplest case is the electron survival probability, the exact expression

of which is:

P (νe → νe) = 1 − sin2(2θ12) cos
4(θ13) sin

2

(

x
δm2

21

4k

)

− sin2(2θ13) sin
2(θ12) sin

2

(

x
δm2

32

4k

)

− sin2(2θ13) cos
2(θ12) sin

2

(

x
δm2

31

4k

)

, (12.25)

insensitive to δ (thus P (νe → νe) = P (νe → νe)) and to the hierarchy of mass. The muon survival is

given by:

P (νµ → νµ) = 1 − [sin2(2θ12) cos
4(θ23) + sin2(2θ23)[cos

4(θ12) + sin4(θ12)] sin
2(θ13)] sin2

(

x
δm2

21

4k

)

− [sin2(2θ23) cos
2(θ13) cos

2(θ12) + sin2(2θ13) sin
4(θ23) sin

2(θ12)] sin2
(

x
δm2

32

4k

)

− [sin2(2θ23) cos
2(θ13) sin

2(θ12) + sin2(2θ13) sin
4(θ23) cos

2(θ12)] sin2
(

x
δm2

31

4k

)

− 8J cos(δ)COSνµ +O(sin3(θ13)), (12.26)

33G. Drexin for the KATRIN Collaboration, 16th TAUP International Conference, Toyama, Japan, Sept. 2019.
34Planck 2018 results. VI. Cosmological parameters, N. Aghanim et al., in Astronomy and & Astrophysics, 2018,

arXiv:1807.06209 [astro-ph.CO].
35Exact expressions in a somewhat different form are found in V. Barger, D. Marfatia, K. Whisnant, Int. J. Mod.

Phys. E12 (2003) 569, hep-ph:0308123.
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with the Jarlskog factor36 J :

J =
1

8
sin(2θ12) sin(2θ23) sin(2θ13) cos(θ13), (12.27)

and the expression COSνµ :

COSνµ =

[

cos2(θ23) cos(2θ12) sin
2

(

x
δm2

21

4k

)

− sin2(θ23)

(

sin2
(

x
δm2

32

4k

)

− sin2
(

x
δm2

31

4k

))]

(12.28)

More precisely, in eq. (12.26), we have neglected very small terms of type sin4(θ13) sin
2(xδm2

21/4k),

sin3(θ13) cos(δ) and sin2(θ13) cos
2(δ). The τ survival probability is obtained from this equation, by

exchanging sin2(θ23) and cos2(θ23) and reversing the sign of the cos(δ) term.

12.4 Oscillation in vacuum, CP asymmetries, mass hierarchy and δ

It is important to obtain the dependence on the phase δ of the oscillation probabilities as it is related

to the CP asymmetries and to the mass hierarchy. In fact, all oscillation probabilities have, up to a

sign, the same dependence on sin(δ) which is relatively easy to obtain. Injecting the parameterisation

eq. (11.12) in the U matrices in eq. (12.16) one finds without approximations

P (νe → νµ) = sin2(2θ12) cos
2(θ13)[cos

2(θ23)− sin2(θ23) sin
2(θ13)] sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) sin
2(θ23) sin

2(θ12) sin
2

(

x
δm2

32

4k

)

+ sin2(2θ13) sin
2(θ23) cos

2(θ12) sin
2

(

x
δm2

31

4k

)

+ 4J cos(δ) COS + 2J sin(δ) SIN, (12.29)

with

COS =

[

cos(2θ12) sin
2

(

x
δm2

21

4k

)

− sin2
(

x
δm2

32

4k

)

+ sin2
(

x
δm2

31

4k

)]

(12.30)

SIN =

[

sin

(

x
δm2

21

2k

)

+ sin

(

x
δm2

32

2k

)

+ sin

(

x
δm2

13

2k

)]

. (12.31)

36C. Jarlskog, Z. Phys. C29 (1985) 491. Due to the unitarity of the PMNS matrix one shows that Im(U∗
αiUαjUβiU

∗
βj)

with α 6= β, α, β = e, µ, τ , i 6= j, i, j = 1, 2, 3, is up to a sign an invariant, thus Im(U∗
e3Ue2Uµ3U

∗
µ2) = J sin(δ).
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Using the sum rule eq. (12.19) or by direct calcultation it comes out:

P (νe → ντ ) = sin2(2θ12) cos
2(θ13)[sin

2(θ23)− cos2(θ23) sin
2(θ13)] sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) cos
2(θ23) sin

2(θ12) sin
2

(

x
δm2

32

4k

)

+ sin2(2θ13) cos
2(θ23) cos

2(θ12) sin
2

(

x
δm2

31

4k

)

− 4J cos(δ) COS− 2J sin(δ) SIN, (12.32)

From the expressions given in eqs. (12.25) to (12.32) and with the help of the relations given in sec.

12.1 we can obtain all survival or oscillation probabilities of neutrinos and antineutrinos. For instance,

one obtains P (νµ → νe) from P (νe → νµ) by reversing the sign of δ in eq. (12.29) and one derives

P (νµ → ντ ) = 1− P (νµ → νe)− P (νµ → νµ) from the sum rule. For completeness we quote it at the

same level of approximation as the previous rates with the further simplification of dropping all terms

proportional to sin2(θ13) in the first line:

P (νµ → ντ ) = −1

4
sin2(2θ23) sin

2(2θ12) sin
2

(

x
δm2

21

4k

)

+ sin2(2θ23)[cos
2(θ12)− sin2(θ12) sin

2(θ13)] cos
2(θ13) sin

2

(

x
δm2

32

4k

)

+ sin2(2θ23)[sin
2(θ12)− cos2(θ12) sin

2(θ13)] cos
2(θ13) sin

2

(

x
δm2

31

4k

)

+ 4J cos(δ) COSτ + 2J sin(δ) SIN, (12.33)

with

COSτ = cos(2θ23)

[

cos(2θ12) sin
2

(

x
δm2

21

4k

)

+ sin2
(

x
δm2

32

4k

)

− sin2
(

x
δm2

31

4k

)]

(12.34)

If one defines a measure of the CP asymmetry in the oscillation να → νβ by

A(να → νβ) = P (να → νβ)− P (να → νβ), (12.35)

then the following relations hold true:

A(νe → νµ) = −A(νµ → νe) = −A(νe → ντ ) = A(νµ → ντ ) = 4J sin(δ) SIN

= 4J sin(δ)

[

sin

(

x
δm2

21

2k

)

+ sin

(

x
δm2

32

2k

)

+ sin

(

x
δm2

13

2k

)]

. (12.36)
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Since the δm2
ij factors are not independent, δm

2
31 = δm2

32+ δm2
21, one can eliminate m2

31, for example,

and obtain:

SIN = 4 sin

(

x
δm2

21

4k

)

sin

(

x
δm2

31

4k

)

sin

(

x
δm2

32

4k

)

(12.37)

= 4 sin

(

x
δm2

21

4k

)

sin2
(

x
δm2

32

4k

)

+O
(

sin2
(

x
δm2

21

4k

))

. (12.38)

where the last relation is valid when x δm2
21/4k is small compared to x δm2

32/4k. Coming back to the

oscillation probabilities, the coefficient of the cos(δ) piece in the equations can likewise be simplified

and one finds37

COS = 2 sin

(

x
δm2

21

4k

)

sin

(

x
δm2

31

4k

)

cos

(

x
δm2

32

4k

)

− 2 sin2(θ12) sin
2

(

x
δm2

21

4k

)

(12.39)

= 2 sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)

cos

(

x
δm2

32

4k

)

+O
(

sin2
(

x
δm2

21

4k

))

. (12.40)

Under these simplifications38, and neglecting small sin2(θ13) corrections in the coefficients of terms in

sin2
(

x δm2
21/4k

)

, the oscillation probabilities for νe → νµ and νe → ντ take the form:

P (νe → νµ) ≈ sin2(2θ12) cos
2(θ23) sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) sin
2(θ23) sin

2

(

x
δm2

32

4k

)

+8J sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)[

cos(δ) cos

(

x
δm2

32

4k

)

+ sin(δ) sin

(

x
δm2

32

4k

)]

(12.41)

P (νe → ντ ) ≈ sin2(2θ12) sin
2(θ23) sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) cos
2(θ23) sin

2

(

x
δm2

32

4k

)

− 8J sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)[

cos(δ) cos

(

x
δm2

32

4k

)

+ sin(δ) sin

(

x
δm2

32

4k

)]

(12.42)

and similarly for other probabilities. The difference between normal and inverted hierarchy occurs

only in the sign of the cos(δ) coefficient, all other terms being insensitive to the sign of δm2
32. If

the present experimental value of δ around 3π/2 (with large error bars) is confirmed, it will be very

difficult to solve the mass hierarchy problem from oscillation experiments in vacuum. More on this

later.

Sometimes, it is sufficient to consider only a two neutrino system, νe and νx say, in which case the

37One has also COSτ = −2 cos(2θ23) [sin
(

xδm2

21/4k
)

sin
(

xδm2

32/4k
)

cos
(

xδm2

31/4k
)

+ sin2(θ12) sin
2
(

xδm2

21/4k
)

].
38They are particularly useful in oscillation experiments with accelerator neutrinos. Note that one can use indifferently

δm2

32 or δm2

31 in eqs. (12.38) and (12.40).

98



oscillation formulae simplify considerably:

P (νe → νe) = 1− sin2(2θ12) sin
2

(

x
δm2

21

4k

)

P (νe → νx) = sin2(2θ12) sin
2

(

x
δm2

21

4k

)

(12.43)

99


	Neutrinos and the Pontecorvo-Maki-Nakagawa-Sakata matrix
	Neutrino survival and oscillation
	Summary of results
	Survival probabilities in vacuum
	Oscillation in vacuum, CP asymmetries, mass hierarchy and 


