12 Neutrinos and the Pontecorvo-Maki-Nakagawa-Sakata matrix

The absence of a CKM mixing matrix for the leptonic sector requires a comment. We assumed that
the right-handed neutrinos decouple from the observed world. As a consequence, as mentioned above,
the neutrinos ve, v, V; remain massless even after spontaneous symmetry breaking since there are,
in the lagrangian density, no terms coupling left-handed and right-handed fields like in eq. (8.26).
Therefore no mass matrix can be constructed from which the “physical” neutrino states are defined.
When studying the weak-current transition from charged leptons to neutrinos we are thus free to
define the neutrino physical states as those for which the charged weak current is diagonal in lepton

flavour.

However, recent experiments have shown that neutrinos oscillate i.e. they change flavour when prop-
agating from their emission point to their detection point. This can be explained if neutrinos are
massive. If one follows the same procedure as for the quarks one introduces right-handed fields and
this leads to Dirac type massive neutrinos. There is another possibility which relies on the fact that,
being neutral, neutrinos can be their own antiparticles and this leads to Majorana type neutrinos. In
the first case the total lepton number L = L. + L, + L, is conserved, while, in the latter case, it is

not. In this section, we deal with Dirac neutrinos, the Majorana case being treated in sec. 15.

We assume that, like quarks, the neutrinos are of Dirac type with both left-handed and right-handed
components. In the flavour basis, besides the triplet of left-handed fields ¢/ one introduces a triplet

of right-handed fields 1/, singlets under SU(2)z,

L R
!/ !/
V=1 v and v, = | Vun (12.1)
Vr, Vrp

In this notation v, is the neutrino produced by an electron in a charged current interaction and
similarly for v,, and v; . Assuming the SU(2); ® U(1)y symmetry holds true, the right handed
neutrinos cannot be produced or interact in reactions mediated by gauge bosons: they do not couple
to the SU(2);, gauge bosons nor to the U(1)y boson since being neutral y,, = 2e,, = 0, thus they
do not couple to W*,Z or « gauge bosons. They can be produced in Higgs decays but, given that
the Higgs couplings are proportional to the masses, it is fair to assert that the production rate via

this channel is not measurable. Their only effect is to give masses to neutrinos. The charged current
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transition (eq. (5.28)) is given by the term (g/v/2) (e, W1/ + 1/ W* e, ), diagonal in flavour where

e, = | (12.2)

is the triplet of left-handed charged leptons. We emphasize that e, ,u,,7, are the mass eigenstates
of the charged leptons. In analogy with the case of quarks, after symmetry breaking, the Dirac mass

term for neutrinos is of the form

() —
Ly, = — 7 v C, y, + h.c. (12.3)

Following the steps leading from eq. (11.3) to eq. (11.6), we introduce the notation (M, hermitian,
T, unitary),
Y c,=M, T, (12.4)

V2

and diagonalize the hermitian matrix by the transformation M,, = S, 'm, S, = SJLmVS,, (S, unitary).
Defining
v,=Sv and v,=5Tuy, (12.5)
the Yukawa lagrangian becomes diagonal,
=Ly,=—V, mv, -V, mv, =—Um,v (12.6)

with my, ms, mg3 the three real eigenvalues of m, and vy, 15,3 the three neutrino mass eigenstates

vy
v=v,tv,=| 1n |. (12.7)
v3

Then, using eq. (12.5), the charged current transition is written

L(leptonic charged current) = % e, Wv +yWhe,)
€ _ — *
= m(eLW‘S’lVL +VL SVW eL). (128)
w
Similarly to the CKM mixing matrix one introduces the Pontecorvo-Maki-Nakagawa-Sakata matrix?!
PMNS = S,JE the matrix elements of which are often written as?2:

Uel U62 Ue3
PMNS = Ui Up Uy (12.9)

UTl UT2 UT3

2Tn 1952, B. Pontevorvo was the first to mention the possibility of v. — 7. oscillations. In 1962, the year when Vy
was discovered, Ziro Maki, Masami Nakagawa and Shoichi Sakata, assuming two kinds of neutrinos proposed a ”particle
mixture theory of neutrino”, Prog. Theor. Physics 28 (1962), 870.

22The PMNS matrix appears simpler than the CKM one since the gauge interaction eq. (12.8) is written directly
in terms of the charged lepton mass eigenstates.
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where e, u, 7 refer to flavour states and 1, 2, 3 to mass eigenstates.

It is easy to check that all terms in the lagrangian density are invariant under the global phase change
of all fields

i\ A i\
e, »€e"e, v, > v, v, eV, (12.10)

To this invariance corresponds the conservation of the total lepton number defined as L = Y Lo, o =
e, i, 7. Tt follows that such transitions as u= — e~ 4+~ or = — e~ +et + ¢~ are allowed in the model.

A recent fit to available data shows that the mixing pattern is quite different from that of the quark?3

|Ue1] = 0.800 — 0.844, |Ug| = 0.515 — 0.581, |U.s| = 0.139 — 0.155
|Uu1| = 0.229 — 0.516, |Uya| = 0.438 — 0.699, |U,s| = 0.614 — 0.790
|Ur1| = 0.249 — 0.528, |Uro| = 0.462 — 0.715, |U 3| = 0.595 — 0.776. (12.11)

As for quarks, no satisfactory model can account for this mixing pattern.

The phenomenology of neutrino mixing is discussed below in the framework of Dirac neutrinos. There
are several recent reviews on this topic, in particular by Nakamura and Petcov?* and by Giganti,

Lavignac and Zito?®. The case of Majorana neutrinos is discussed in sec. 15 and by Bilenky and

Petcov26.

12.1 Neutrino survival and oscillation
The space-time evolution of a state of given mass is (h =c = 1)
lvi(z) >= e_i(Et_Ef)\V,- > (12.12)

As will be seen below it is justified to assume the neutrinos to be ultrarelativistic particles so that

E ~ k+m?/2k and the equation becomes (x denotes now the length travelled by the neutrino)

vi(z) >= e @ mI2R)|y, > (12.13)

23]. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, T. Schwetz, JHEP 1701 (2017) 087,
arXiv:1611.01514 [hep-ph]. The variation of the coefficients is given for a 3 o range.

21K. Nakamura, S.T. Petcov, in Particle Data Group (PDG), M. Tanabashi et. al., Phys. Rev. D98 (2018) 030001
(http://pdg.1bl.gov).

25C. Giganti, S. Lavignac, M. Zito, Prog. Part. Nucl. Phys. 98 (2018) 1, arXiv:1710.00715 [hep-ex].

263 M. Bilenky, S.T. Petcov, Rev. Mod. Phys. 59 (1987) 671.
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We consider a neutrino of type « produced in a charged current interaction with momentum k. It is

a coherent superposition of neutrino states of definite mass®’,

Vg > Z >, a=e T i=1,2,3. (12.14)
The space-time evolution of this neutrino is given at a later time ¢ and at a distance z = ¢ by

PNE: Z e~ (mi/2R)|y, > (12.15)

The probability for this neutrino, initially of flavour «, to be observed as a neutrino of flavour 3 at

the distance x from the emission point is

P(voy — vg) = | < vglva(x) > | ZUM-UQ]-UBZ-UBJ- exp | ix—= | (12.16)

2 _ 2 2 . . .
where the symbol dmj; = mj — m;. Separating the real and imaginary part of the phase factor and
using the unitarity of the U matrix (U;Ug; = 6,5) this expression can be written as:

om?. om3;
Pva = v5) = s — 4> Re(UzUn;UgiU%,;) sin’ <f€ 4,;]> 22 (U3 UaUpiU3;) sin <x 2/?) ’

>3 (>

(12.17)
For the time reversed transition P(rvg — v,) permuting o and S in eq. (12.16) is equivalent to

permuting ¢ and j so that it comes out

4/<;]> - 2ZIm(UaanjU5iUﬁj)s1n <x 2kj) ,
1>]

(12.18)

which exhibits the violation of 7 invariance due to the phase factor in the PMNS matrix. One finds

P(vg — vy) = dup — 42 Re(Uy;UajUsiUg;) sin? <x
(>

the same result, eq. (12.18), for P(¥, — 7g), exhibiting this time the CP violation of the model.
Then CPT is conserved because P(vg — 1) = P(Uq — 7). Finally one has the sum rule, valid in
the three family model
1= Z Plvy —vg) = Z P(vy — 7g), for any vy, 7. (12.19)
Vg=Ve,Vp,Vr Vg=Te,Up,Vr
It is important to remark that in case of a disappearance probability, P(v, — v,), the last term
in the egs. (12.17) or (12.18) disappears since terms such as U, Uy UaiUy; are real and therefore a

disappearance probability cannot depend on the imaginary part of the PMNS matrix elements.

*"From egs. (12.5), (12.9) a flavour field v,, is related to the fields v;;, of given masses by va, = 3,(ST)aivi, =
; Uaiviy , but the state |vo > is created by the field 7, , hence eq. (12.14).

L L
28VVe use cos (x5m i/2k) =1 —2 sin (:c sm? /4k), the factor 1 then leading to the dap term.
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12.2 Summary of results

It turns out, as will be discussed below, that the last factor in eqs. (12.17) and (12.18) is small. Then,
oscillations, as a function of x, in the probability for the neutrino to change flavour (or to remain in
the same flavour) are essentially induced by the factors sin?(z 5m22j /4k). For the oscillation to be seen
this factor should be of O(1). To be quantitative, we have to inject the h and ¢ factors to make the

argument of the sin? factor dimensionless. One finds?

2 2 2 2 (a2 2 a2
om;; x _ 19710-18 om;; [GeV=] x [km] o7 om;; [eV] @ [km] o7 om;; [eV] @ [m]

K K [GeV] K [GeV] rpiev] 0 1220)

where we have given this expression in terms of the units commonly used. One defines the oscillation

length associated to a given mass squared difference by the condition

omy; a k [MeV]

=7 = zml=247—" k[GeV]
5m?j [eV~]

km| = 247 ——-.
or @ [la] 5m?j [eV?]

(12.21)

Conversely, we can use this formula to estimate the sensitivity of typical neutrino experiments to mass

squared differences as shown in the table below. In some experimental conditions, a factor (z 577%2;' /4k)

Source type of v | k [GeV] | # [km] | <ém?Z> [eV?]
Reactors (short baseline) Ve 1073 1 1073
Reactors (long baseline) Ve 1073 100 107°
Accelerators (short baseline) Uy, Uy, 1 1 1
Accelerators (long baseline) Vi Uy 1 10° 1073
Atmospheric Ve, Ve, Vs Uy, 1 10* 1074
Sun Ve 1072 [ 1.510° 1010

Table 1: Sensitivity in terms of (5m22j of the different types of neutrino experiments characterised by
the energy k of the neutrino and the distance x between the v source and the detector.

may remain small and its contribution to the oscillation pattern becomes negligible. In other cases on
the contrary, it stays very large and the oscillating sin? term averages out to 1/2. These facts simplify
the analysis of the oscillations as will be seen below in the discussion of several experiments. We give

here the values of the parameters, with the PMINS matrix written as in eq. (11.12), obtained from of

29In eq. (12.12) the dimensionless phase should be —i(Et — k #)/h, with the energy E measured in GeV and k in
GeV/c as appropriate for neutrino experiments. It can be written —i(Ect — k#)/(hic), with both E and k as well
as the mass measured in GeV and [ct] = [z] in km if ¢ is expressed in km/sec. We have (see the PDG tables)
hic = 197.3267 107! GeV-km; using the approximate form eq. (12.13), the oscillation factor in eq. (12.17) becomes
om3; [GeV?] z [km]/(4 k [GeV] hc[GeV-km]) = 1.27107"®6m3; [GeV?] z [km]/k [GeV].
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a recent global analysis of data3°

om3, = (6.92 —7.91)1075eVZ,  m3; = (2.392 — 2.594) 1073 eV?
sin? 012 = 0.265 — 0.346, sin® fy3 = 0.430 — 0.602, sin® 615 = 0.0190 — 0.0239. (12.22)

By convention the mass mo is chosen larger than m; but there are two possibilities for mg: either
m1 < meo < mg, labeled normal hierarchy, or ms < mi < mg, labeled inverted hierarchy. The above
results are obtained assuming a normal hierarchy. In the other case the values of the parameters
are very similar except of course for the sign of 57”:21,1'- For example, the best fit value for 5m§2 is
2.418 1073 eV? (normal hierarchy) and dm2, = —2.478 1072 eV? (inverted hierarchy). There are two
independent 5m22j and given the relative smallness of dm3;, one is justified to take |0m3,| ~ |dm3].
Concerning the mass hierarchy and the CP violating phase J, they are difficult to extract because, as
will be seen, they enter the observables with small coefficients. One notes that the angle 613 is much
smaller than the other mixing angles and small 613 approximations will often be used. At present
fits to data seem to indicate a value 0 ~ 37/2, with large error bars, for both mass hierarchies and a

preference for normal hierarchy.

One does not know the absolute scale of neutrino masses. If we assume m; < msy one gets my ~
8.61073 eV and ms ~ 5.11072 eV, while in the inverted hierarchy case, assuming ms < m; the result
is m; ~ my ~ 5.1 1072eV. One way to experimentally access the mass scale of neutrinos is through
nuclear [ decay which allows to give a direct limit on the 7, mass. For these purposes, several past
and ongoing experiments study tritium decay3', 3H — 3He+ e~ +T,.. The electron energy spectrum
is sensitive to the neutrino mass near the upper end of the spectrum. Denoting Ej the total energy
release in the decay, the maximum value of the electron energy is F < Fy ~ 18 keV, if the neutrino
is massless. A non vanishing neutrino mass will slightly reduce the bound to £ < Ey — m,, and will
modify the shape of the spectrum near this end point of the distribution. Near the end point the

electron spectrum behaves as

AN/dE x E, k,, = (Ey — E)((Ey — E)?> —m?2)'/2, (12.23)

e

which has a non-zero derivative, in fact —oo, if the neutrino is massive. The effect is very hard to

measure since the rate of energetic electrons is very low. A limit established some years ago®? was

30F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Prog. Part. Nucl. Phys. 102 (2018) 48, arXiv:1804.09678 [hep-
ph]; see also P.F. de Salas, S. Gariazzo, O. Mena, C.A. Ternes, M. Tértola, Front. Astron. Space Sci. 5 (2018) 36;
arXiv:1806.11051 [hep-ph]; P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tértola, J.W.F. Valle, Phys. Lett. B782 (2018)
633, arXiv:1708.01186 [hep-ph]; NuFIT webpage, http://www.nu-fit.org/.

31G. Drexlin, V. Hannen, S. Mertens, and C. Weinheimer, Adv.High Energy Phys. (2013) 293986, arXiv:1307.0101.

32Troitzk Collaboration, V.N. Aseev et al. Phys. Rev D84 (2011) 112003.
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my, < 2.05 eV at 95% c.l., quite a bit higher than the tentative scales suggested above. The KATRIN
experiment which started operation in 2018, in Karlsruhe, quotes now an upper limit of 1.1 eV at
90% c.1.33. By 2024 the collaboration expects to reach 0.2 eV (90% c.l.) or 0.35 eV (5 o). Finally
astrophysical and cosmological limits are available on the sum of neutrino masses and a recent result

reported by the Planck collaboration is34

> my <12V, (12.24)
J
but this result is model dependent. In the following we use for the PMINS matrix, eq. (12.9), the
representation, eq. (11.12).

12.3 Survival probabilities in vacuum

Since, in experiments, both survival and oscillation probabilities can be measured we quote below
the general form of these expressions for 3 flavoured neutrinos® In the analysis of results it will turn
out that different approximations can be made, depending on the experimental set-up, which simplify
considerably the general expressions. The reduced forms will be easily obtained from the results given

in this section and the next. The simplest case is the electron survival probability, the exact expression

of which is:
2 2
P(ve = v,) =1 — sin?(2613) cos®(#13) sin? (méz?:l) — sin?(26,3) sin?(#12) sin® <x5T52>
. 9 2 .2 5m§1
— sin*(2613) cos”(f12) sin” | ) (12.25)

insensitive to ¢ (thus P(ve — v.) = P(Ve — U.)) and to the hierarchy of mass. The muon survival is
given by:

5 2
P(v, — v,) =1 — [sin?(2612) cos® (623) + sin?(2623)[cos* (012) + sin*(612)] sin?(613)] sin? (m%)

2
— [5in?(2643) cos®(613) cos®(612) + sin?(26;3) sin? (fa3) sin?(012)] sin? <$ 52;?)

4k
— 8.J cos(8) COS,,, + O(sin®(613)), (12.26)

2
— [sin?(2623) cos?(A13) sin?(012) + sin?(2613) sin(623) cos?(H12)] sin? <x5m—31>

33@. Drexin for the KATRIN Collaboration, 16th TAUP International Conference, Toyama, Japan, Sept. 2019.

34Planck 2018 results. VI. Cosmological parameters, N. Aghanim et al., in Astronomy and & Astrophysics, 2018,
arXiv:1807.06209 [astro-ph.CO].

35Exact expressions in a somewhat different form are found in V. Barger, D. Marfatia, K. Whisnant, Int. J. Mod.
Phys. E12 (2003) 569, hep-ph:0308123.
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with the Jarlskog factor®® .J:
1
J = 3 sin(2612) sin(26s3) sin(2613) cos(#13), (12.27)

and the expression COS,, :

dm3 om3 dm3
_ 2 .2 21\ _ o2 2 32| _ in2 31
COS,,, = |cos”(fa3) cos(2012) sin <x P > sin”(fa3) <sm <a: P ) sin <x P >>} (12.28)

More precisely, in eq. (12.26), we have neglected very small terms of type sin?(613) sin(xdm2, /4k),
sin®(613) cos(d) and sin?(#13) cos?(6). The 7 survival probability is obtained from this equation, by

exchanging sin?(fa3) and cos?(fa3) and reversing the sign of the cos(d) term.

12.4 Oscillation in vacuum, CP asymmetries, mass hierarchy and J

It is important to obtain the dependence on the phase d of the oscillation probabilities as it is related
to the CP asymmetries and to the mass hierarchy. In fact, all oscillation probabilities have, up to a
sign, the same dependence on sin(d) which is relatively easy to obtain. Injecting the parameterisation

eq. (11.12) in the U matrices in eq. (12.16) one finds without approximations

2
P(ve = v,) = sin?(2012) cos?(613)[cos? (fa3) — sin?(623) sin?(0;3)] sin? (m 5?}?)

2
+ sin?(26;3) sin?(6a3) sin®(612) sin® <x5;n—]§’2>

4k
+ 4Jcos(0) COS + 2 Jsin(d) SIN, (12.29)

2
+  sin?(2613) sin?(fa3) cos? (6;2) sin’ (xém_31>

with

om3 dmj3 dmj3
_ -2 21\ _ o2 32 L2 31
COS = [005(2912)sm <a: 1 ) sin <x P )—i—sm <x PP >] (12.30)

2 2 2
SIN = [sin <:E572r;€21> + sin <$5727?2> + sin <mégﬂ23>} . (12.31)

(. Jarlskog, Z. Phys. C29 (1985) 491. Due to the unitarity of the PMNS matrix one shows that Im(U%;Ua; UsiUj;)
with a # 6, a,8=e, u, 7,1 # 4, 4,5 = 1,2,3, is up to a sign an invariant, thus Im(UZ3Ue2UL3U};2) = J sin(0).
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Using the sum rule eq. (12.19) or by direct calcultation it comes out:

2

Pve = v;) = sin?(2013)cos?(A13)[sin?(f23) — cos?(fz3) sin(613)] sin? (3: Omay

4k

2
n sin2(2913) cos2(923) sin2(912) sin? <x52n—kg2>

2
+  sin?(2613) cos?(f3) cos?(6;2) sin’ <3:5T—k?’1>

— 4 .Jcos(d) COS — 2 Jsin(d) SIN,

)

(12.32)

From the expressions given in eqs. (12.25) to (12.32) and with the help of the relations given in sec.

12.1 we can obtain all survival or oscillation probabilities of neutrinos and antineutrinos. For instance,

one obtains P(v, — v.) from P(v. — v,) by reversing the sign of § in eq. (12.29) and one derives

Py, »v:)=1-Pv, = ve) —

P(v, — v,) from the sum rule. For completeness we quote it at the

same level of approximation as the previous rates with the further simplification of dropping all terms

proportional to sin?(#;3) in the first line:

with

2
Py, —»v,) = —i sin?(26,3) sin?(26,2) sin® <a: 572?)

+  sin?(2623)[cos?(012) — sin?(812) sin?(613)] cos?(63) sin? <:E

4+ sin®(2093)[sin?(012) — cos?(012) sin?(013)] cos?(613) sin? <ac om

+ 4 Jcos(6) COS; + 2 Jsin(d) SIN,

2 2 2
COS; = cos(263) [005(2912)sin2 <x%> + sin? (xézl—]jﬁ> — sin® <w%>]

If one defines a measure of the CP asymmetry in the oscillation v, — vg by

.A(I/a — I/B) = P(Va — VB) — P(?a — ?B),

then the following relations hold true:

Alwe = vy) = —Alvy = ve) = —Alve = vr) = A(y, = v) =4Jsin(6)SIN
— ; - om3, : dm3, : dmis
= 4 J sin(9) |:Sln (:E o > + sin (:1: ok > + sin (:1: ok >] .
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Since the 5m factors are not independent, ém#%; = dm3, + dm3;, one can eliminate m3;, for example,

. om3\ omi\ Im3,
SIN = 4sin <x P >sm <x P >sm <x P > (12.37)
2
my

B ) oms3; dm3, om3,
= 4sin (3: 1 >Sln <:E P >+(9<sm <$W . (12.38)

where the last relation is valid when z 6m%, /4k is small compared to z 6m2,/4k. Coming back to the

and obtain:

oscillation probabilities, the coefficient of the cos(d) piece in the equations can likewise be simplified

om3;\ . dm3, dm3, . 9 .o [ om3,
P ) sin <x T el Gyl 2 sin®(f12) sin T (12.39)
. om3;\ . dm3, dm3, dm3,
2 sin (3: P > sin <x T A 4I<: + O | sin? e=r )] (12.40)

38

and one finds3”

COS = 2sin <x

Under these simplifications®, and neglecting small sin?(f;3) corrections in the coefficients of terms in

sin? (a: 5m%1/ 4k), the oscillation probabilities for v, — v, and v, — v, take the form:

2
P(ve — v,) = sin®(2012) cos®(fa3) sin® <:17 572?) + sin?(26;3) sin?(fa3) sin® <x5m_32>

4k
< > [COS o <$64 >+Sm(5) Sm( 52152)] (12.41)

2
P(ve — v;) = sin®(2615) sin®(fa3) sin? < om 21) + sin?(2613) cos?(fa3) sin® x5m32>

1k
< > [005(5) cos <$54k >+SIH(5) Sm< om 4§2>] (12.42)

and similarly for other probabilities. The difference between normal and inverted hierarchy occurs

8 J si )
+ Sln< m

—8J Sin<

only in the sign of the cos(§) coefficient, all other terms being insensitive to the sign of dm3,. If
the present experimental value of § around 37 /2 (with large error bars) is confirmed, it will be very
difficult to solve the mass hierarchy problem from oscillation experiments in vacuum. More on this

later.

Sometimes, it is sufficient to consider only a two neutrino system, v, and v, say, in which case the

*7One has also COS- = —2 cos(2623) [sin (xdm3,; /4k) sin (xdm3,/4k) cos (xdm3, /4k) + sin®(012) sin® (zém3, /4k)].
38They are particularly useful in oscillation experiments with accelerator neutrinos. Note that one can use indifferently
dm3, or 6m3; in eqs. (12.38) and (12.40).
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oscillation formulae simplify considerably:

2
P(ve = v,) = 1 —sin?(265)sin? <x5;n—]:1>

i 02 o Om3,
P(ve — vy) = sin®(2612)sin” | x P (12.43)
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