
13 Neutrinos interactions with matter

Atmospheric (anti)neutrinos observed after crossing the earth or neutrinos produced in the sun prop-

agate through matter and interact with it before reaching the detector. The scattering on protons,

neutrons and electrons in matter will modify the oscillation patterns. This is the Mikheyev-Smirnov-

Wolfenstein (MSW) effect39. The important parameters in this effect are the electron density in

matter and the neutrino energy. For some values of the parameters large resonance effects enhance

the neutrino conversion rate compared to what is expected in vacuum.

To illustrate this point it is sufficient to consider a two-flavour model with mass eigenvectors |ν1> and

|ν2> with the 1 state being the lightest one. From eq. (12.13) the evolution of the doublet of |νi(t)>
states, in vacuum, is given by (t = x):

i
d

dt

(

|ν1(t)>
|ν2(t)>

)

= H0

(

|ν1(t)>
|ν2(t)>

)

=

(

m2
1/2k 0
0 m2

2/2k

)(

|ν1(t)>
|ν2(t)>

)

, (13.1)

with H0 the free hamiltonian. A global phase change on the |νi(t)> states does not affect the physics

but shifts the hamiltonian by a matrix proportional to the unit matrix. For instance, a phase change

im2
1t/2k on both states leads to the evolution equation:

i
d

dt

(

|ν1(t)>
|ν2(t)>

)

=

(

0 0
0 δm2/2k

)(

|ν1(t)>
|ν2(t)>

)

, (13.2)

with δm2 = m2
2
−m2

1
taken to be positive. The evolution of the flavour states |νe(t)> and |νx(t)>

(|νx(t)> can be a combination of |νµ(t)> and |ντ (t)>)40, is easily obtained from the relation:
(

|νe(t)>
|νx(t)>

)

= R(θ)

(

|ν1(t)>
|ν2(t)>

)

with the matrix R(θ) =

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

. (13.3)

We then have:

i
d

dt

(

|νe(t)>
|νx(t)>

)

= R(θ)

(

0 0
0 δm2/4k

)

RT(θ)

(

|νe(t)>
|νx(t)>

)

(13.4)

=

(

(δm2/2k) sin2(θ) (δm2/4k) sin(2θ)
(δm2/4k) sin(2θ) (δm2/2k) cos2(θ)

)(

|νe(t)>
|νx(t)>

)

= Hfl
0

(

|νe(t)>
|νx(t)>

)

, (13.5)

with Hfl
0 is the free hamiltonian in the flavour basis. The interaction of neutrinos with matter can

preserve or destroy the coherence of the system. In the latter case, the state of the particles (momentum

and spin) is modified and it can be shown that incoherent interactions are negligible.

39L. Wolfenstein, Phys. Rev. D17 (1978) 2369; S.P. Mikheyev, A.Yu. Smirnov, Prog. Part. Nucl. Phys. 23 (1989)
41.

40We have in mind solar neutrinos but the discussion applies to any two flavour system.
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13.1 Incoherent scattering

For example, for neutrinos up to a GeV, scattering on nucleons νx+n→ x+p is the dominant process

and the cross section41 can be parameterised as:

σ ≈ 10−43

(

Eν

MeV

)2

cm2, (13.6)

with Eν the energy in the frame where the nucleon is at rest. The scattering length of the neutrino in

matter is lmatter = 1/NNσ where NN is the number of nucleons per cm3. In the core of the sun, the

density is 150 gr/cm3, so approximately 1026 nucleons per cm3. The scattering length is then:

lsun ≈ 1017
(

Eν

MeV

)−2

cm ≈ 1012
(

Eν

MeV

)−2

km. (13.7)

The typical energy of solar neutrinos being .1 MeV < Eν < 10 MeV, the corresponding scattering

length is 1014 km > lsun > 1010 km, to be compared to the sun radius of 7 105 km. Incoherent neutrino

scattering in the sun is negligible.

The range of energy of neutrinos crossing the earth is much larger, from .1 MeV for solar neutrinos

to TeV’s for atmospheric or cosmic ones. At high energy the charged current ν-nucleon cross section

behaves as

σ ≈ 6.7 10−39

(

Eν

GeV

)

cm2.

The matter density in the earth ranges from 4 gr/cm3 in the mantle to, on the average, 11 gr/cm3 in

the core. This leads respectively to NN = 2.4 1024 to 6.6 1024 nucleons per cm3. Then, the scattering

length of 100 GeV neutrinos learth varies from 6. 106 km in the mantle to 2 106 km in the inner core.

This is to be compared to the mantle thickness of 2.9 103 km and the core radius of 3.4 103 km. Thus

the effect of the earth matter is negligible for neutrinos of energy up to hundreds of GeV. On the

contrary, for neutrinos around 100 TeV and above the earth becomes opaque since the cross section

grows linearly with energy.

13.2 Coherent scattering

Coherence of the neutrino system is preserved by forward elastic scattering of the neutrino on matter.

This can go via neutral current interactions, on protons, neutrons or electrons, νe,x +N → νe,x + N

and νe,x+e
− → νe,x+e

−, which are universal for all neutrinos species or via charged current exchange

which is specific to νe scattering on electrons (see fig. 15 in sec. 14.4). These interactions add a piece

41J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307.
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to the hamiltonian which becomes

H = Hfl
0 +Hfl

int (13.8)

where Hfl
int

is diagonal in flavour. Implementing a phase change on the states amounts to shifting

the hamiltonian by a matrix proportional to unity and one can thus subtract the universal neutral

current contribution leaving the charged current one which affects only the element <νe|Hfl
int
|νe>=

<νe|Hfl
cc|νe>. This interaction is given by eqs. (2.1), (2.2) in sec. 2.1,

GF√
2
ψe(x)γµ(1− γ

5
)ψνe(x) ψνe(x)γ

µ(1− γ
5
)ψe(x) = 2

√
2GF ψeL(x)γµψνeL

(x) ψνeL
(x)γµψeL(x)

= 2
√
2GF ψνeL

(x)γµψνeL
(x) ψeL(x)γµψeL(x), (13.9)

where a Fierz transformation has been made to obtain the second line. The effective interaction

hamiltonian of the neutrinos in matter is obtained by summing over all electrons in matter42:

Hfl
cc = 2

√
2GF

∫

dp3ef(pe) <eL(pe)|ψνeL
(x)γµψνeL

(x) ψeL(x)γµψeL(x)|eL(pe)>

= 2
√
2GF ψνeL

(x)γµψνeL
(x)

∫

dp3ef(pe) <eL(pe)|ψeL(x)γµψeL(x)|eL(pe)>, (13.10)

where the electron energy distribution f(pe) in matter is homogeneous, isotropic and is normalised to
∫

dp3ef(pe) = 1. Assuming the electron approximately at rest in the medium, the space components γi

can be neglected and the combinations ψγµψ reduce to ψγ0ψ = ψ†ψ, so that

Hfl
cc = 2

√
2GF ψ†

νeL
(x)ψνeL

(x)

∫

dp3ef(pe) <eL(pe)|ψ†
eL
(x)ψeL(x)|eL(pe)>,

=
√
2GF ψ†

νeL
ψνeL

Ne, (13.11)

with Ne the density of electrons in the medium (NeL = Ne/2). The evolution equation will then be of

the form

i
d

dt

(

|νe(t)>
|νx(t)>

)

=

(

(δm2/2k) sin2(θ) +
√
2GFNe (δm2/4k) sin(2θ)

(δm2/4k) sin(2θ) (δm2/2k) cos2(θ)

)(

|νe(t)>
|νx(t)>

)

= H
(

|νe(t)>
|νx(t)>

)

.

(13.12)

Due to the charged current interaction the mass eigenstates |νi(t)> of eq. (13.1) no longer diagonalize

the hamiltonian. Let us denote ω1 and ω2 the eigenvalues of the above matrix and |νm1
(t)> and

|νm2
(t)> the corresponding mass eigenstates related to the flavour states |νe(t)> and |νx(t)> at time

t by

|νe(t)> = cos θm|νm1
(t)> +sin θm|νm2

(t)>

|νx(t)> = − sin θm|νm1
(t)> +cos θm|νm2

(t)> . (13.13)
42M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460 (2008) 1.
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13.3 Matter of constant density

If Ne is independent of t, so are θm and the eigenvalues given by:

ω1,2 =
GFNe√

2
+
δm2

4k
∓ 1

2

√

(
√
2GFNe − cos(2θ)δm2/2k)2 + (sin(2θ)δm2/2k)2

=
δm2

4k

[

Â+ 1∓
√

sin2(2θ) + (cos(2θ)− Â)2
]

, (13.14)

with ωi the eigenvalue of the state |νmi
(t)>. The important parameter Â is defined by:

Â =
2
√
2GF kNe

δm2
, (13.15)

which is the ratio of the interaction energy in matter to the vacuum energy. The matrix H in eq.

(13.12) is diagonalised by RT(θm)HR(θm) = diag(ω1, ω2) (see eq. (13.3)) and one finds:

tan(θm) =
Â− cos(2θ) +

√

sin2(2θ) + (cos(2θ)− Â)2

sin(2θ)
(13.16)

from which we derive (for δm2 positive):

cos(2θm) =
cos(2θ)− Â

√

sin2(2θ) + (cos(2θ)− Â)2

sin(2θm) =
sin(2θ)

√

sin2(2θ) + (cos(2θ)− Â)2
, (13.17)

To obtain the oscillation probabilities we use eqs. (12.43):

P (νe → νe) = 1− sin2(2θm) sin2
(

δM2t

4k

)

, P (νe → νx) = sin2(2θm) sin2
(

δM2t

4k

)

, (13.18)

where43

δM2 = δm2

√

sin2(2θ) + (cos(2θ)− Â)2. (13.19)

The corresponding oscillation length in matter is given by (see eq. (12.21):

lmat =
4πk

δM2
=

2π

ω2 − ω1

(13.20)

Several cases can be distinguished assuming Ne constant in the medium (with δm2 positive).

43The physics depends only on the difference ω2 − ω1 and θm, which are functions of the difference of the diagonal
elements of H, in agreement with the fact that one can modify H by adding to it a matrix proportional to unity.
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• If Â ≪ 1, then sin(2θm) ≈ sin(2θ)(1 + Â cos(2θ)), δM2 ≈ δm2(1 − Â cos(2θ)): the interaction

with matter is small and the neutrino system evolves almost as in empty space, lmat ≈ lvac with

a small correction;

• If Â ≫ | cos(2θ)|, interaction with matter is dominant: then sin(2θm) ≈ sin(2θ)/Â ≈ 0 and

cos(2θm) ≈ −1, hence θm ≈ π/2: from eq. (13.13) the electron neutrino tends to a pure

mass eigenstate |νm2
>, the heaviest state (ω2 ≈

√
2GFNe); it propagates without oscillations

independent of the value of the mixing angle in vacuum;

• If Â ≈ cos(2θ), this is the resonant regime: it occurs only if cos(2θ) is positive (0 < θ < π/4),

then cos(2θm) ≈ 0, sin(2θm) ≈ 1, θm ≈ π/4, lmat ≈ lvac/ sin(2θ); the electron neutrino is an

equal combination of |νm1
> and νm2

>, independent of the initial mixing angle, the amplitude of

oscillations is maximal, since sin(2θm) ≈ 1, as well as the oscillation length. For π/4 < θ < π/2

there is no resonance effect possible and θm is always larger than π/4.

Remarks

• When applying eq. (13.11) to antineutrinos states one will obtain an extra − sign44, thus

giving a contribution −
√
2GFNe to H. Then, the sign of Â for antineutrinos is opposite to

that for neutrinos. If the resonance condition Â ≈ cos(2θ) can be reached for neutrinos, it

cannot occur for antineutrinos and vice-versa. For antineutrinos the resonance condition requires

π/4 < θ < π/2.

• The evolution of neutrinos in matter violates the CP symmetry, which is obvious since matter

is not CP symmetric.

Application to solar neutrinos

Electron neutrinos are produced in the core of the sun where Ne can be as large as 6. 1025 cm−3. It

is useful to define the quantity NRes by

NRes =
δm2 cos(2θ)

2
√
2GF k

, (13.21)

related to the parameter Â previously introduced by

Ne

NRes

=
Â

cos(2θ)
(13.22)

44ν̄e → ν̄e scattering is obtained from νe → νe by crossing symmetry which implies a relative - sign when crossing
fermions.
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Taking for θ and δm2 the values θ12 and δm2
21 from eq. (12.22) below, one obtains

N21
Res ≈ .8 10−6

(

Eν

MeV

)−1

MeV3 ≈ 1026
(

Eν

MeV

)−1

cm−3, (13.23)

so N21
Res

/ 1025 cm−3 for Eν ' 10 MeV. In that case, the condition Ne ≫ N21
Res

(equivalently Â ≫
cos(2θ12)) is realised and the neutrino is produced in a mass eigenstate. On the contrary, neutrinos

of energy Eν ≈ .1 MeV evolve as in vacuum since they satisfy Ne ≪ N21
Res

. The range of values

of θ12 given in eqs. (12.22 ), 30o < θ12 < .38o implies cos(2θ12) > 0 so that the resonance regime

Â ≈ cos(2θ12) can be satisfied for neutrinos of intermediate energies. In the sun, however, Ne is a

decreasing function of x, the distance from the center, and taking this effect into account requires

a special treatment to which we turn in the next section. We can also consider oscillations to the

third generation and estimate N31
Res

. Using the values of θ13 and δm2
31

from eq. (12.22) one finds

Ne/N
31
Res

≈ 6.10−3(Eν/MeV), so that 6.10−4 < Ne/N
31
Res

< 6.10−2 in the Eν range [.1, 10.] MeV,

making matter effects negligible in this case. When studying oscillations in the sun, working in the 2

family oscillation model will be a good enough approximation.

Neutrinos through the earth

The electron density in the earth is much less than in the sun and it remains approximately con-

stant in the core45 (Ne ≈ 3.3 1024 cm−3) and in the mantle (Ne ≈ 1.2 1024 cm−3). It is then

expected that solar neutrinos with Eν < 10 MeV will be little affected by coherent interactions

when traversing the earth. However this will not the case for higher energy neutrinos in the GeV

and multi-Gev range. Furthermore, in the 3-ν model, 13 oscillations will become important since

Ne/N
31
Res

= 2
√
2GF k/(δm

2
31 cos(2θ13)) can be of order 1 in the GeV range. This will be discussed

later.

13.4 Matter of varying density: νe in the sun

When the density of electrons decreases from the core to the surface, as it is the case in the sun, the

angle θm(t) becomes a function of x = t. The variation of θm(x) should bring a dθm(x)/dx = θ′m(x)

dependence in the evolution equations of the neutrino system. From eq. (13.13) written as

(

|νe(x)>
|νx(x)>

)

= R(θm(x))

(

|νm1
(x)>

|νm2
(x)>

)

, (13.24)

45One assumes an equal number of neutrons and protons hence Np = Ne = NN/2, with NN given above.
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we derive

i
d

dx

(

|νe(x)>
|νx(x)>

)

= i

(

d

dt
R(θm(x))

)(

|νm1
(x)>

|νm2
(x)>

)

+R(θm(x)) i
d

dt

(

|νm1
(x)>

|νm2
(x)>

)

= R(θm(x))

[

RT (θm(x)) i

(

d

dt
(R(θm(x))

)

+

(

ω1(x) 0
0 ω2(x)

)](

|νm1
(x)>

|νm2
(x)>

)

= R(θm(x))

(

ω1(x) iθ′m(x)
−iθ′m(x) ω2(x)

)

RT (θm(x))

(

|νe(x)>
|νx(x)>

)

, (13.25)

similar to eq. (13.4) except for the off-diagonal term iθ′m(x). If |2 θ′m(x)/(ω2(x) − ω1(x)| ≪ 1,

then ω1(x) and ω2(x) will remain approximate eigenvalues of the system and the |νmi
(x)> will be

approximately the mass eigenstates. Intuitively, one expects this to happen if the rate of change of

the electron density (1/Ne)dNe/dx is very slow compared to the oscillation length in matter. This

rate of change is measured by (1/Ne)dNe/dx = 1/r0, where a large value of r0 corresponds to a small

variation of Ne and if

r0/lmat ≫ 1, (13.26)

with lmat given by eq. (13.20), then the variation of Ne will have a small effect on the neutrino mass

eigenstates. More precisely, this condition is :

ω2(x)− ω1(x)

2 |θ′m(x)| ≫ 1. (13.27)

From eqs. (13.17) one derives

2 θ′m(x) =
dÂ

dx

sin(2θ)

sin2(2θ) + (cos2(2θ)− Â)2
, (13.28)

and from eq. (13.15) one has,

dÂ

dx
=
Â

r0
. (13.29)

Using then the relations

sin2(2θ) + (cos2(2θ)− Â)2

sin2(2θ)
= 1 + tan−2(2θm) , (13.30)

the condition (13.27) can be written:

1

Â

r0δm
2

2k
sin2(2θ)(1 + tan−2(2θm))3/2 =

2πr0
lmat

NRes

Ne
tan(2θ)(1 + tan−2(2θm)) ≫ 1 . (13.31)

If this condition is satisfied the evolution of the neutrino system in matter is said to be adiabatic.

The flavoured neutrinos related, at the initial time, to the mass eigenstates |νmi
(x0)> by the angle
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θm = θm(x0) as in eq. (13.24), will be, at each point of the evolution, related to the mass eigenstates

|νmi
(x)> by the angle θm(x), until they exit from matter in vacuum, at a distance R where the mixing

angle is θ and the mass eigenstates |νi>. The assumed adiabatic evolution does not mix the |νm1
(x)>

and |νm2
(x)> states which evolve respectively to the |ν1> and |ν2> states of the vacuum when the

neutrino exit from the medium. Thus, for

|νe(x0)>= cos(θm(x0))|νm1
(x0)> +sin(θm(x0))|νm2

(x0)>, (13.32)

at some initial time, one has at time x,

|νe(x)>= cos(θm(x))|νm1
(x)> +sin(θm(x))|νm2

(x)>, (13.33)

and when the neutrino reaches the surface of the sun,

|νe(R)>= cos(θ)|ν1> +sin(θ)|ν2>, (13.34)

The probability to find a νe at the surface will be |<νe(R)|νe(x0)> |2, i.e.:

P (νe → νe;x0, R) = [cos(θ) cos(θm(x0)) <ν1|νm1
(x0)> +sin(θ) sin(θm(x0)) <ν2|νm2

(x0)>]
2

=
1

2
[1 + cos(2θ) cos(2θm(x0))] + oscillating term

≈ sin2(θ) + cos(2θ) cos2(θm(x0)), (13.35)

where we have supposed that the oscillating term averages out to 0. As a special case, if at x0 the

neutrino is produced in a pure mass eigenstate |νm2
(x0)> (θm(x0) = π/2), then the neutrino will

remain in this pure mass eigenstate |νm2
(x)> during its propagation until it reaches the surface where

|νm2
(R)>= |ν2> in vacuum. The probability to find a νe at the surface will then be

P (νe → νe;x0, R) = sin2(θ). (13.36)

On the contrary, one may consider the extreme non-adiabaticity case of the evolution in matter: in

that case a νe produced in the |νm2
(x0)> state ends up as the |ν1(R)> when exiting from the medium,

and if this occurs

P (νe → νe;x0, R) = cos2(θ). (13.37)

in contrast with eq. (13.36). The general treatment of a non adiabatic evolution is given by Petcov46.

It is easy to check that, in the sun, the adiabaticity condition is satisfied.

46 S.T. Petcov, Phys. Lett. 200 (1988) 373.
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13.5 Neutrinos through the earth

As mentioned above, for energetic neutrinos traversing the earth Ne/N
21
Res

is very large and Ne/N
31
Res

may be of order 1 for Eν ' 1 GeV: indeed, in that case, Ne ≈ 1.2 to 3.3 1024 cm−3 compared

N21
Res

≈ 1023 (Eν/GeV)−1 cm−3 and N31
Res

≈ 1025 (Eν/GeV)−1 cm−3. It is then necessary to work with

the full 3-ν model. The free hamiltonian when acting on the mass eigenstates is

H0 =





m2
1/2k 0 0
0 m2

2
/2k 0

0 0 m2
3
/2k



 . (13.38)

After a change of phase on the states it can be put in the form

H0 =





0 0 0
0 δm2

21
/2k 0

0 0 δm2
31
/2k



 (13.39)

with δm2
ij = m2

i −m2
j . Going to the flavour basis,





νe
νµ
ντ



 = U





ν1
ν2
ν3



 , (13.40)

the hamiltonian is written Hfl
0 = U H0 U† where U is parameterised20 as in eq. (11.12), U =

U23U13(δ)U12. Since the interaction in matter affects only the electron the interacting hamiltonian

is written

Hfl = U





0 0 0
0 δm2

21/2k 0
0 0 δm2

31/2k



U† +





√
2GFNe 0 0
0 0 0
0 0 0



 (13.41)

= U23 U(δ)



U13U12





0 0 0
0 δm2

21
/2k 0

0 0 δm2
31
/2k



U †
12
U †
13

+





√
2GFNe 0 0
0 0 0
0 0 0







U †(δ)U †
23
.

Several comments are in order. The matrix U23 does not affect the interaction matrix which can then

be multiplied by U23 on the left and U †
23

on the right. Furthermore, writing U13(δ) = U(δ)U13 U
†(δ)

with

U(δ) =





1 0 0
0 1 0
0 0 eiδ



 , (13.42)

the δ dependence can be factored out as indicated above. We know that δm2
21 ≪ δm2

31 and we have

seen that, in the earth, for neutrinos in the GeV range and above, the ratio δm2
21
/2
√
2GFNek is very
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small which justifies the approximation δm2
21 = 0 which is now done. This will considerably simplify

the discussion47. The hamiltonian in the flavour basis can then be written:

Hfl = U23 U(δ)



U13





0 0 0
0 0 0
0 0 δm2

31
/2k



U †
13

+





√
2GFNe 0 0
0 0 0
0 0 0







U †(δ)U †
23
. (13.43)

The matrix U12 plays no role because of our choice δm2
21

= 0, so we take θ12 = 0, U12 = 1. Then this

equation becomes:

Hfl = U23 U(δ)





(δm2
31/2k) sin

2(θ13) +
√
2GFNe 0 (δm2

31/4k) sin
2(2θ13)

0 0 0
(δm2

31
/4k) sin2(2θ13) 0 (δm2

31
/2k) cos2(θ13)



U †(δ)U †
23
. (13.44)

The diagonalisation of the interacting hamiltonian follows the procedure of sec. 13.3. Here one eigen-

value ω2 is 0 while the other two, ω1,3, are given by

ω1,3 =
δm2

31

4k

[

Â+ 1∓
√

sin2(2θ13) + (cos(2θ13)− Â)2
]

, (13.45)

identical to the eigenvalues given in eq. (13.14) with the substitution θ → θ13 and δm2 → δm2
31. As

in the work of M. Freund47 Â is now

Â = 2
√
2GFNek/δm

2
31 . (13.46)

The 3× 3 matrix in eq. (13.44) is diagonalised via the matrix Um
13 and Hfl is then written:

Hfl = U23 U(δ)Um
13





ω1 0 0
0 0 0
0 0 ω3



Um†
13

U †(δ)U †
23
, (13.47)

with the matrix Um
13

of the same form as U13 but function of the angle θm
13
. This angle is given by eqs.

(13.16) or (13.17) with the appropriate change of notation. Finally the matrix Um which relates the

flavour eigenstates and the mass eigenstates (with eigenvalues ω1, 0, ω3) of the interacting theory is of

the usual form

Um = Um
23 U

m
13(δ)U

m
12 = U23 U

m
13(δ)U12, (13.48)

47The full treatment, which is applied here in a simplified form, is given in M. Freund, Phys. Rev. D64 (2001)
053003, [arXiv:hep-ph/0103300].
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with

sin(θm12) = 0, sin(θm23) = sin(θ23), δm = δ

cos(2θm13) =
cos(2θ13)− Â

√

sin2(2θ13) + (cos(2θ13)− Â)2
=

cos(2θ13)− Â

Ĉ

sin(2θm13) =
sin(2θ13)

√

sin2(2θ13) + (cos(2θ13)− Â)2
=

sin(2θ13)

Ĉ
. (13.49)

with

Ĉ =

√

sin2(2θ13) + (cos(2θ13)− Â)2 . (13.50)

To reconstruct the various νe transition probabilities, one needs to define the oscillating factors given

by x(ωi − ωj)/2. They are, in the small θ13 approximation (see eqs. (12.22)), and using Â < 1:

x
(ω2 − ω1)

2
= −x ω1

2
≈ −Âδm

2
31

4k
x

x
(ω3 − ω2)

2
= x

ω3

2
≈ δm2

31

4k
x

x
(ω3 − ω1)

2
= x Ĉ

δm2
31

4k
≈ |1− Â|δm

2
31

4k
x. (13.51)

The oscillation probabilities, eqs. (12.25), (12.29) and (12.32) considerably simplify because of the

vanishing of θ12: the only oscillating factor to be kept is sin2(x (ω3 − ω1)/2) = sin2(x Ĉ δm2
31
/4k) all

others are multipled by sin(θ12) and disappear. One finds:

P (νe → νµ) ≈ sin2(θ23)
sin2(2θ13)

Ĉ 2
sin2

(

x Ĉ
δm2

31

4k

)

, (13.52)

Changing sin(θ23) to cos(θ23), one obtains P (νe → ντ ). In the small θ13 approximation Ĉ ≈ |1 − Â|
and

P (νe → νµ) ≈ sin2(θ23)
sin2(2θ13)

(1− Â)2
sin2

(

x(1− Â)
δm2

31

4k

)

, (13.53)

As a result of neutrino interaction with matter, both the amplitude and the frequency of oscillations

are modified.

Going beyond the δm2
21 = 0 approximation leads to much more complicated expressions for the

different parameters which are given in the work of Martin Freund47. All parameters in eqs. (13.49)

receive a correction proportional to α = δm2
21/δm

2
31. However, in a realistic and often used limit,

drastic simplifications are possible. This is the case if one keeps only leading terms in α and sin(θ13). In

110



practice if one keeps, in the probability functions, only terms up to O(α2), O(sin2(θ13)), O(α sin(θ13)),

the only correction to the parameters in eqs. (13.49) to take into account is a modification of θ12 to

θm12. To derive it, we turn back to eq. (13.41) and consider, assuming now θ13 ≈ 0, U13 ≈ 1, the

diagonalisation by the matrix Um
12 of

Um
12



U12





0 0 0
0 δm2

21/2k 0
0 0 δm2

31
/2k



U †
12

+





√
2GFNe 0 0
0 0 0
0 0 0







Um†
12
. (13.54)

This is done in sec. 13.3, the only difference being here that we define ω1 as the largest eigenvalue

and ω2 the smallest. This amounts to exchanging ω1 and ω2, hence reversing the sign of the square

root factor in eq (13.16). This leads to a negative θm12, and in the large Â21 = Â/α≫ 1 limit, to

sin(2θm12) ≈ −sin(2θ12)

Â21

= −αsin(2θ12)
Â

. (13.55)

from eq. (13.17). Using this result together with eqs. (13.49) and (13.51) one reconstructs the various

probability functions. All oscillatory factors now enter the formulae and, from eq. (12.29), one finds

for the oscillation νe → νµ:

P (νe → νµ) ≈ sin2(θ23)
sin2(2θ13)

(1− Â)2
sin2

(

x(1− Â)
δm2

31

4k

)

+ α2 cos2(θ23)
sin2(2θ12)

Â2
sin2

(

xÂ
δm2

31

4k

)

+ α
8J cos(δ)

Â(1− Â)
cos

(

x
δm2

31

4k

)

sin

(

xÂ
δm2

31

4k

)

sin

(

x(1− Â)
δm2

31

4k

)

+ α
8J sin(δ)

Â(1− Â)
sin

(

x
δm2

31

4k

)

sin

(

xÂ
δm2

31

4k

)

sin

(

x(1− Â)
δm2

31

4k

)

. (13.56)

To obtain the terms in sin(δ) and cos(δ) we use respectively eqs. (12.37) and (12.39) with J as defined

in eq. (12.27). We recall this expression is valid in the small δm2
21/δm

2
31 and sin(θ13) approximation.

The effect of matter is contained in Â = 2
√
2GFNek/δm

2
31 which changes the relative weights of the

terms compared to vacuum and the magnitude of the change is energy dependent since Â ∝ k. Taking

α = 0 one recovers a previously derived result but it is not allowed in this expression to make Â = 0,

the vacuum limit, since the derivation was done assuming Â = Ne cos(2θ13/N
31
Res

> α. With the

present value of δm2
21 this condition is, for neutrinos traversing the earth, Eν > .3 GeV. The results

above thus do not apply to solar neutrinos but it does apply to atmospheric and accelerator neutrinos.

The time reversed probability P (νµ → νe) is obtained from the above equation by reversing the sign of

δ while for P (νe → νµ) one reverses both the sign of Â and δ. From eq. (12.33) and the above results

one can obtain the oscillation probability P (νµ → ντ ) in matter which are stronger than νµ → νe, the
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dominant term being proportional to sin2(2θ23) rather than sin2(2θ13).

• Discussion and order of magnitude of the parameters

We summarize here for later use the value of the parameters and the order of magnitude of the

|α| Â xδm2
21/4k xδm2

31/4k xÂδm2
31/4k

3. 10−2 .125 (k/GeV) 10−4 (x/km)(k/GeV)−1 3.2 10−3 (x/km)(k/GeV)−1 4 10−4 (x/km)

Table 2: Value of the parameters controling the neutrino oscillations in the earth mantle: |α| =
δm2

21/|δm2
31|, Â = 2

√
2GF kNe/|δm2

31| with Ne = 1.25 1024 cm−3, δm2
21 is positive and δm2

32 ≈ δm2
31

is assumed. The value of the masses are taken from eq. (12.22).

oscillating factors. One of the experimentally unsolved question is the mass ordering, i.e. is δm2
31

positive or negative ? Although the derivation above was done assuming this quantity positive it also

holds with δm2
31 < 0 keeping δm2

21 > 0. In that case, Â is also negative but the combinations α/Â

and Â δm2
31

remain positive. Similarly to the oscillations in vacuum the difference between the two

hypothesis is the sign of the cos δ term but this term is very small if δ ≈ 3π/2 (see eq. (13.56)).

In matter however, since the magnitude of the oscillation depends on Â one can use the energy as a

parameter to probe the hierarchy hypothesis. For example, all terms with a normalisation factor in

1/(1− Â) will be sensitive to the sign of δm2
31 provided of course that the associated oscillating factor

x(1−Â)δm2
31/4k be large enough so as not to compensate the normalisation otherwise one can expand

sin(x(1− Â)δm2
31/4k) ≈ (1− Â) sin(xδm2

31/4k) and then get back the vacuum oscillation result.
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