13 Neutrinos interactions with matter

Atmospheric (anti)neutrinos observed after crossing the earth or neutrinos produced in the sun prop-
agate through matter and interact with it before reaching the detector. The scattering on protons,
neutrons and electrons in matter will modify the oscillation patterns. This is the Mikheyev-Smirnov-
Wolfenstein (MSW) effect3®. The important parameters in this effect are the electron density in
matter and the neutrino energy. For some values of the parameters large resonance effects enhance

the neutrino conversion rate compared to what is expected in vacuum.

To illustrate this point it is sufficient to consider a two-flavour model with mass eigenvectors |v;> and
|vo> with the 1 state being the lightest one. From eq. (12.13) the evolution of the doublet of |v;(t)>

states, in vacuum, is given by (¢ = x):

o) =70 (o) = (0" i) (1) 0o

with Hg the free hamiltonian. A global phase change on the |v;(t)> states does not affect the physics
but shifts the hamiltonian by a matrix proportional to the unit matrix. For instance, a phase change

im3t/2k on both states leads to the evolution equation:

S o) (1)

with 6m? = m3 — m? taken to be positive. The evolution of the flavour states |v.(t)> and |v,(t)>
(Jvz(t)> can be a combination of |v,(t)> and |v,(t)>), is easily obtained from the relation:
lve(t)>\ lv1(t)> . . [ cos(#) sin(0)
<\Vx(t)> =R(0) (1) with the matrix R(6) = —sin(0) cos(d)) (13.3)
We then have:

d ’Ve(t)> . 0 0 ’Ve(t)>

Yat <|1/w(t)>> = R(0) (0 5m2/4l<:> RY(6) <|l/m(t)>> (13.4)
_ (0m?/2k)sin%(0)  (6m?/4k) sin(20) lve(t)>) Ve (t)>
N (((5m2/4k:) sin(20)  (6m?/2k) 0052(9)> (’yx(t)>> = Hp <\Vx(t)>> , (13.5)

with ’Hg is the free hamiltonian in the flavour basis. The interaction of neutrinos with matter can
preserve or destroy the coherence of the system. In the latter case, the state of the particles (momentum

and spin) is modified and it can be shown that incoherent interactions are negligible.

397.. Wolfenstein, Phys. Rev. D17 (1978) 2369; S.P. Mikheyev, A.Yu. Smirnov, Prog. Part. Nucl. Phys. 23 (1989)
41.
10WWe have in mind solar neutrinos but the discussion applies to any two flavour system.
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13.1 Incoherent scattering

For example, for neutrinos up to a GeV, scattering on nucleons v, +n — x+ p is the dominant process

1

and the cross section?! can be parameterised as:

2

143 [ _Ev 2

o~10 MoV ) S (13.6)
e

with E, the energy in the frame where the nucleon is at rest. The scattering length of the neutrino in

matter is lymatter = 1/Nnyo where Ny is the number of nucleons per cm?®. In the core of the sun, the

density is 150 gr/cm?, so approximately 1026 nucleons per cm3. The scattering length is then:
B\ "2 B\ 2
loun ~ 107 <M—e”v> cm ~ 10'2 (M—e”v> km. (13.7)

The typical energy of solar neutrinos being .1 MeV < FE,, < 10 MeV, the corresponding scattering
length is 101 km > lg,, > 10'° km, to be compared to the sun radius of 710° km. Incoherent neutrino
scattering in the sun is negligible.

The range of energy of neutrinos crossing the earth is much larger, from .1 MeV for solar neutrinos
to TeV’s for atmospheric or cosmic ones. At high energy the charged current v-nucleon cross section

behaves as

o~ 6.7107% <%> cm?.
The matter density in the earth ranges from 4 gr/cm? in the mantle to, on the average, 11 gr/cm? in
the core. This leads respectively to Ny = 2.4 10%* to 6.6 10?* nucleons per cm?®. Then, the scattering
length of 100 GeV neutrinos lean varies from 6. 106 km in the mantle to 2 106 km in the inner core.
This is to be compared to the mantle thickness of 2.9 10? km and the core radius of 3.4 103 km. Thus
the effect of the earth matter is negligible for neutrinos of energy up to hundreds of GeV. On the
contrary, for neutrinos around 100 TeV and above the earth becomes opaque since the cross section

grows linearly with energy.

13.2 Coherent scattering

Coherence of the neutrino system is preserved by forward elastic scattering of the neutrino on matter.
This can go via neutral current interactions, on protons, neutrons or electrons, ve,; + N — vez + N
and v,z +€~ — v, +e, which are universal for all neutrinos species or via charged current exchange

which is specific to v, scattering on electrons (see fig. 15 in sec. 14.4). These interactions add a piece

41J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307.

101



to the hamiltonian which becomes
H=H+ 1, (13.8)

where HE

int 1s diagonal in flavour. Implementing a phase change on the states amounts to shifting

the hamiltonian by a matrix proportional to unity and one can thus subtract the universal neutral
current contribution leaving the charged current one which affects only the element <v,|H |v,>=
<ve|H |v.>. This interaction is given by eqs. (2.1), (2.2) in sec. 2.1,
Gr — — — —
7 De(@)7u(1 = %) (2) Py (2)7" (1 = 75 ) (2) = 2V2 G e (0)1utbue (%) Wy, ()7 Ve (@)
= 2VIGr Ty, (21, (1) Ty ()t (), (13.9)

where a Fierz transformation has been made to obtain the second line. The effective interaction

hamiltonian of the neutrinos in matter is obtained by summing over all electrons in matter®?:

M = 2VEGE [4(0.) <er(poli (07" o (o) TeyfaPytn(olerp)>
= WEGE Ty, (7o) [0 <en(p T fabybe@lerlp)>,  (1310)

where the electron energy distribution f(p.) in matter is homogeneous, isotropic and is normalised to
f dp? f(pe) = 1. Assuming the electron approximately at rest in the medium, the space components 7;

can be neglected and the combinations Emﬂﬁ reduce to 1Yo = i, so that

ML = 2VEGE U, (@, (o) [drb(p) <enlpo)lvl, (@), (o)lespe)>

= V2Gr Yf, b, N, (13.11)
with N, the density of electrons in the medium (N., = N./2). The evolution equation will then be of
the form

zi we(t)>\  ((0m?/2k)sin®(0) + V2GrN, (dm%/4k)sin(20)\ [|ve(t)>\ 2 Ve (t)>
dt \|vz(t)>) (6m?/4k) sin(20) (6m?/2k) cos?(9) ) \|v=(t)>) — vz (t)>) "
(13.12)

Due to the charged current interaction the mass eigenstates |v;(t)> of eq. (13.1) no longer diagonalize
the hamiltonian. Let us denote w; and wa the eigenvalues of the above matrix and |v,, (t) > and
|Umg (t)> the corresponding mass eigenstates related to the flavour states |ve(t)> and |v,(t)> at time

t by

lve(t)> = cos0™|vpm, (t)> +sin 0™ |y, (t)>

lve(t)> = —sin0™ vy, (£)> + cos 0™ v, (t)> . (13.13)
42M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460 (2008) 1.
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13.3 Matter of constant density

If N, is independent of ¢, so are " and the eigenvalues given by:

Ne 2 1
wig = G\I;i + 54% F 5\/(\/§GFN6 — c0s(20)0m?/2k)? + (sin(260)dm?/2k)?
2
= 64% [A +1F \/sin2(29) + (cos(20) — A)?2 |, (13.14)

with w; the eigenvalue of the state |vy,,(t)>. The important parameter A is defined by:

A 2\/§GF]CN6
A= ——-—— 13.1
G (13.15)

which is the ratio of the interaction energy in matter to the vacuum energy. The matrix H in eq.
(13.12) is diagonalised by RT(6™) H R(6™) = diag(wi,w2) (see eq. (13.3)) and one finds:

A — cos(20) + 1/sin?(20) + (cos(20) — A)2
tan(6™) = (20) \/Sin((%)) (cos(20) — 4) (13.16)

from which we derive (for §m? positive):

cos(20™) — cos(20) — A
\/sin?(26) + (cos(26) — A)?

sin(20™) = sin(26) , (13.17)
\/sin?(26) + (cos(26) — A)”

To obtain the oscillation probabilities we use egs. (12.43):

M? M?
P(ve = ve) = 1 — sin?(20™) sin? <54k t) , P(ve — vy) = sin?(20™) sin? <54k t) .| (13.18)
where*?
SM? = 5m? \/ sin?(26) + (cos(20) — A)2. (13.19)
The corresponding oscillation length in matter is given by (see eq. (12.21):
Ak 2m
Imat = = 13.20
¢ 5M2 w9y — W1 ( )

Several cases can be distinguished assuming N, constant in the medium (with §m? positive).

“3The physics depends only on the difference ws — w1 and ™, which are functions of the difference of the diagonal
elements of H, in agreement with the fact that one can modify H by adding to it a matrix proportional to unity.
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o If A < 1, then sin(20™) ~ sin(26)(1 + A cos(26)), 6M? ~ dm?(1 — Acos(26)): the interaction
with matter is small and the neutrino system evolves almost as in empty space, lnmat = lyvac With

a small correction;

o If A > |cos(20)|, interaction with matter is dominant: then sin(20™) = sin(20)/A ~ 0 and
cos(20™) ~ —1, hence ™ ~ 7/2: from eq. (13.13) the electron neutrino tends to a pure
mass eigenstate |V, >, the heaviest state (wo ~ v2GrN,); it propagates without oscillations

independent of the value of the mixing angle in vacuum;

e If A ~ cos(26), this is the resonant regime: it occurs only if cos(26) is positive (0 < 8 < 7/4),
then cos(20™) ~ 0, sin(20™) ~ 1, 0™ =~ 7/4, lmat = lyac/ sin(26); the electron neutrino is an
equal combination of |v,,> and v;,,>, independent of the initial mixing angle, the amplitude of
oscillations is maximal, since sin(20"") ~ 1, as well as the oscillation length. For 7/4 < 6 < 7/2

there is no resonance effect possible and 6™ is always larger than /4.
Remarks

e When applying eq. (13.11) to antineutrinos states one will obtain an extra — sign**, thus
giving a contribution —v2GrN, to H. Then, the sign of A for antineutrinos is opposite to
that for neutrinos. If the resonance condition A ~ cos(20) can be reached for neutrinos, it

cannot occur for antineutrinos and vice-versa. For antineutrinos the resonance condition requires
/4 <6 <72

e The evolution of neutrinos in matter violates the CP symmetry, which is obvious since matter

is not CP symmetric.

Application to solar neutrinos

Electron neutrinos are produced in the core of the sun where N, can be as large as 6. 10> cm ™3, It
is useful to define the quantity Nges by
om? cos(26)

Niee = 2 COSU2) 13.21
R N2Grk (13:21)

related to the parameter A previously introduced by

N A
NRres  cos(26)

(13.22)

“pe — De scattering is obtained from ve — ve by crossing symmetry which implies a relative - sign when crossing

fermions.
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Taking for § and dm? the values 015 and ém3, from eq. (12.22) below, one obtains

E -1 E -1
N3l ~ 81076 Y MeV? ~ 1026 [ —£ -3 13.2
Res ~ -8 10 <MeV> eV 0 MoV cm”7, (13.23)

so NEL. £ 10%° cm™ for E, Z 10 MeV. In that case, the condition N, > NZL_ (equivalently A>
cos(2012)) is realised and the neutrino is produced in a mass eigenstate. On the contrary, neutrinos
of energy E, ~ .1 MeV evolve as in vacuum since they satisfy N, < Nﬁ}as. The range of values
of 612 given in eqgs. (12.22 ), 30° < 612 < .38° implies cos(2612) > 0 so that the resonance regime
A~ cos(2612) can be satisfied for neutrinos of intermediate energies. In the sun, however, N, is a
decreasing function of x, the distance from the center, and taking this effect into account requires
a special treatment to which we turn in the next section. We can also consider oscillations to the
third generation and estimate N3... Using the values of 613 and dm3, from eq. (12.22) one finds
Ne/N3L. ~ 6.1073(E,/MeV), so that 6.107% < N./N3l. < 6.1072 in the E, range [.1,10.] MeV,
making matter effects negligible in this case. When studying oscillations in the sun, working in the 2

family oscillation model will be a good enough approximation.

Neutrinos through the earth

The electron density in the earth is much less than in the sun and it remains approximately con-
stant in the core® (N, ~ 3.3 10?* cm™3) and in the mantle (N, ~ 1.2 10?* cm™3). It is then
expected that solar neutrinos with E, < 10 MeV will be little affected by coherent interactions
when traversing the earth. However this will not the case for higher energy neutrinos in the GeV
and multi-Gev range. Furthermore, in the 3-v model, 13 oscillations will become important since
N¢/N3L. = 2v2Gpk/(6m3, cos(2013)) can be of order 1 in the GeV range. This will be discussed

later.

13.4 Matter of varying density: 7, in the sun

When the density of electrons decreases from the core to the surface, as it is the case in the sun, the
angle 0™ (t) becomes a function of x = t. The variation of 6™ (z) should bring a d0™(x)/dx = 6., (x)
dependence in the evolution equations of the neutrino system. From eq. (13.13) written as

<|ye(:g)>> —R(E™()) <|vm1 (x)>> 7 (13.24)

vz (2)> Vi, (2)>

450One assumes an equal number of neutrons and protons hence N, = N, = Ny /2, with Ny given above.
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we derive
(i) = 1@re) (I”"“E”” >+W< 5 (o)

)>
)>
d wi(z) 0 |V, (2)>
_ om “ 1
R(6™ () [ <d ) * < 0 wa(z) |V (2)>
_ m wi(z) 05, (2)\ L1 gm |ve(z)>
= R(O™(x)) <—u9;n(3:) s () R (6™ (x)) va()> ) (13.25)
similar to eq. (13.4) except for the off-diagonal term 6, (x). If |26, (z)/(w2(x) — wi(x)] < 1,
then wi(z) and wa(z) will remain approximate eigenvalues of the system and the |vp,,(z)> will be
approximately the mass eigenstates. Intuitively, one expects this to happen if the rate of change of
the electron density (1/N.)dN./dx is very slow compared to the oscillation length in matter. This
rate of change is measured by (1/N.)dN./dx = 1/ry, where a large value of ry corresponds to a small

variation of N, and if
70/lmat > 1, (13.26)

with st given by eq. (13.20), then the variation of N, will have a small effect on the neutrino mass
eigenstates. More precisely, this condition is :

wo(x) — wi(x)
TG > 1. (13.27)

From eqs. (13.17) one derives

d_fl sin(26)

20n() = G e 28) + (cow?(28) — A

(13.28)

and from eq. (13.15) one has,
dA A

13.29
dr ro ( )
Using then the relations
sin?(20) + (cos?(20) — A)? 1+ tan—2(20™) (13.30)
sin?(26) B ’ '
the condition (13.27) can be written:
1 rodm? 2170 NRes
2 7’02:‘ n%(20)(1 + tan~2(20™))3/2 = l”—TO = tan(20)(1 + tan~?(20™) > 1| (13.31)
mat e

If this condition is satisfied the evolution of the neutrino system in matter is said to be adiabatic.

The flavoured neutrinos related, at the initial time, to the mass eigenstates |vy,, (xo)> by the angle
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0" = 0™ (x) as in eq. (13.24), will be, at each point of the evolution, related to the mass eigenstates
|Um, (x)> by the angle 0™ (z), until they exit from matter in vacuum, at a distance R where the mixing
angle is 6 and the mass eigenstates |v;>. The assumed adiabatic evolution does not mix the |vy,, (z)>
and |V, (x)> states which evolve respectively to the |v1> and |v9> states of the vacuum when the

neutrino exit from the medium. Thus, for
|Ve(20)>= cos(0™ (x0))|Vm, (x0)> +sin(6™ (z0)) |Vm, (0)>, (13.32)
at some initial time, one has at time =,
|Ve(2)>= cos(0(x))|Vm, (x)> +sin(0™(x)) |V, (2)>, (13.33)
and when the neutrino reaches the surface of the sun,
|Ve(R)>= cos(0)|v1> +sin(0)|ve>, (13.34)

The probability to find a v, at the surface will be | <ve(R)|ve(z0)>|?, i.e.:

P(ve = ve; 0, R) = [cos(8) cos(0™(x0)) <v1|Vm, (20)> + sin(8) sin(0™ (x0)) <va|Vmy, (20)>]?

= %[1 + cos(20) cos(20™(xg))] + oscillating term
sin?(0) + cos(26) cos? (0™ (x0)), (13.35)

&Q

where we have supposed that the oscillating term averages out to 0. As a special case, if at xg the
neutrino is produced in a pure mass eigenstate |vp,(xo)> (0" (x¢) = m/2), then the neutrino will
remain in this pure mass eigenstate |vy,, (z)> during its propagation until it reaches the surface where

|V, (R)>= |v2> in vacuum. The probability to find a v, at the surface will then be

P(ve = ve; g, R) = sin?(6). (13.36)

On the contrary, one may consider the extreme non-adiabaticity case of the evolution in matter: in
that case a v, produced in the |y, (x¢)> state ends up as the |v;(R)> when exiting from the medium,
and if this occurs

P(ve — ve; w0, R) = cos?(6). (13.37)

in contrast with eq. (13.36). The general treatment of a non adiabatic evolution is given by Petcov?0.

It is easy to check that, in the sun, the adiabaticity condition is satisfied.

46 S.T. Petcov, Phys. Lett. 200 (1988) 373.
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13.5 Neutrinos through the earth

As mentioned above, for energetic neutrinos traversing the earth N, /le{})s is very large and N, /Nl‘;’is
may be of order 1 for E, Z 1 GeV: indeed, in that case, N, ~ 1.2 to 3.3 10%* cm™3 compared
NEL ~10% (E,/GeV)™! cm™ and N3L. ~ 10%° (E,/GeV)~! ecm™3. It is then necessary to work with

the full 3-v model. The free hamiltonian when acting on the mass eigenstates is

m?/2k 0 0
Ho = 0 m3/2k 0 . (13.38)
0 0 mi/2k

After a change of phase on the states it can be put in the form

0 0 0
Ho= (0 &m3,/2k 0 (13.39)
0 0 om3, )2k

with 5m?j =m? — m? Going to the flavour basis,

Ve 1Z1
vl =U 1], (13.40)
vy 1%

the hamiltonian is written 7-[51 = UHoU' where U is parameterised?® as in eq. (11.12), U =

UssUy3(0)Ur2. Since the interaction in matter affects only the electron the interacting hamiltonian

is written
0 0 0 V2GpN. 0 0
HY =u |0 om3, )2k 0 U+ 0 00 (13.41)
0 0 dm3, /2k 0 00
0 0 0 V2GFN, 0 0
= Uy U(0) |UisUsz |0 0m32, /2k 0 UlLUl, + 0 0 o]|UtG)Ul.
0 0 dm3, /2k 0 0 0

Several comments are in order. The matrix Uss does not affect the interaction matrix which can then

be multiplied by Uss on the left and U;rg on the right. Furthermore, writing U13(8) = U(0) U1z UT(6)

with

1 0 0

ué)=1(o 1 0|, (13.42)
00 e

the § dependence can be factored out as indicated above. We know that dm3; < dm3; and we have

seen that, in the earth, for neutrinos in the GeV range and above, the ratio ém3,/ 2v2G g N,k is very
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small which justifies the approximation ém3, = 0 which is now done. This will considerably simplify

the discussion?”. The hamiltonian in the flavour basis can then be written:

0 0 0 V2GEN, 0 0
HY = Uy U(S) [Ui3 |0 0 0 Ul + 0 0 ol|Ute) ul. (13.43)
0 0 6&m2 /2k 0 00

The matrix Uy plays no role because of our choice (5m%1 =0, so we take 619 = 0, U1jo = 1. Then this
equation becomes:
(6m3,/2k)sin?(013) + V2GEN, 0 (6m2,/4k)sin®(20;3)
HY = Uy3 U(6) 0 0 0 Ut Uly.  (13.44)
(6m3, /4k) sin?(2613) 0 (6m3,/2k) cos?(013)
The diagonalisation of the interacting hamiltonian follows the procedure of sec. 13.3. Here one eigen-

value wy is 0 while the other two, w3, are given by

2
wiz = oms) [A +1F \/sin2(2913) + (cos(2613) — A)?|, (13.45)

identical to the eigenvalues given in eq. (13.14) with the substitution § — 63 and dm? — 5m§1. As

in the work of M. Freund%” A is now

A =2V2GpN.k/sm3, |. (13.46)

The 3 x 3 matrix in eq. (13.44) is diagonalised via the matrix U% and H" is then written:

w1 0 0
HY=UpU@)UR [0 0 o |UBtUto) U, (13.47)

0 0 w3
with the matrix U735 of the same form as U3 but function of the angle 675. This angle is given by eqs.
(13.16) or (13.17) with the appropriate change of notation. Finally the matrix &4 which relates the
flavour eigenstates and the mass eigenstates (with eigenvalues wi, 0, ws) of the interacting theory is of

the usual form
U™ = Uzz Ui3(8) Uy = Uz Uy3(0) Unz, (13.48)

4TThe full treatment, which is applied here in a simplified form, is given in M. Freund, Phys. Rev. D64 (2001)
053003, [arXiv:hep-ph/0103300].
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with

sin(A73) = 0, sin(fy3) = sin(fas3), M =9
26013) — A 26013) — A

cos(20) = cos(2613) _ cos( 91:3)
\/sin2(2913) + (cos(2613) — A)? c

sin(207) = sin(2013) — - sin(2013) (13.49)
\/sin2(2913) + (cos(2613) — A)? c

with

C= \/sin2(2913) + (cos(26,3) — A)2. (13.50)

To reconstruct the various v, transition probabilities, one needs to define the oscillating factors given

by (w; —w;)/2. They are, in the small f;3 approximation (see eqs. (12.22)), and using A < 1:

(wg —w1) w1 A5m§1
T YT T g
(w3 — w2) _ w3 om3,
2 2 4k
(w3 —w1) ., Om32 - om3
;—— =aC 451 ~ |1 — A 4];”1 (13.51)

The oscillation probabilities, eqgs. (12.25), (12.29) and (12.32) considerably simplify because of the
vanishing of f2: the only oscillating factor to be kept is sin?(z (ws — w1)/2) = sin?(z C dm3, /4k) all
others are multipled by sin(6;12) and disappear. One finds:

. sin2(2913) . N 5m2
P(ve — v,) = sin®(0a3) oz sin? <a:C ﬁ) , (13.52)

Changing sin(fa3) to cos(fa3), one obtains P(v, — v;). In the small 613 approximation C' ~ |1 — A

and

in?(26;3) - om?2
Pl ~ sin2(0yg) S2013) e (g - 4y 2ma 13,
(Ve = v) & sin®(ba3) 01— Ay sin” | z( )4]{7 , (13.53)

As a result of neutrino interaction with matter, both the amplitude and the frequency of oscillations

are modified.

Going beyond the dm2, = 0 approximation leads to much more complicated expressions for the
different parameters which are given in the work of Martin Freund®’. All parameters in egs. (13.49)
receive a correction proportional to a = dm3;/dm3,. However, in a realistic and often used limit,

drastic simplifications are possible. This is the case if one keeps only leading terms in e and sin(#13). In
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practice if one keeps, in the probability functions, only terms up to O(a?), O(sin?(13)), O(asin(613)),
the only correction to the parameters in eqs. (13.49) to take into account is a modification of 615 to
m

7. To derive it, we turn back to eq. (13.41) and consider, assuming now 613 ~ 0,U;3 ~ 1, the

diagonalisation by the matrix U5 of

0 0 0 V2GEpN, 0 0
Un |Up |0 6m2,/2k 0 Ul, + 0 0 o]|upat (13.54)
0 0 dm3, /2k 0 00

This is done in sec. 13.3, the only difference being here that we define wq as the largest eigenvalue
and wo the smallest. This amounts to exchanging w; and wsy, hence reversing the sign of the square

root factor in eq (13.16). This leads to a negative 673, and in the large Ay = fl/a > 1 limit, to

sin(2607%) ~ —% = —a%. (13.55)
21

from eq. (13.17). Using this result together with eqgs. (13.49) and (13.51) one reconstructs the various
probability functions. All oscillatory factors now enter the formulae and, from eq. (12.29), one finds

for the oscillation v, — v:

.2 2 ;2 2
P(ve = v,) = sin2(923)w sin? (3:(1 - A)%> +a? 0052(923)81111(4722912) sin? <3:A%>

(1— A)2 4k 4k
2 852 R 2
a 8{2 cos(jl; cos <w5$§’1> sin <a:A5T]§’1> sin <a:(1 — A)(Zn—]jl>
2 2
a 8? s1n(5)) in <x5$§’1> sin <xA6jZ§’1> sin <a:(1 — A)(Szl—]:l> . (13.56)

To obtain the terms in sin(d) and cos(d) we use respectively eqs. (12.37) and (12.39) with J as defined
in eq. (12.27). We recall this expression is valid in the small dm2, /ém3; and sin(6;3) approximation.
The effect of matter is contained in A = 2¢/2G N k/dm3, which changes the relative weights of the
terms compared to vacuum and the magnitude of the change is energy dependent since A x k. Taking
a = 0 one recovers a previously derived result but it is not allowed in this expression to make A= 0,
the vacuum limit, since the derivation was done assuming A= N, cos(2613 /Ngﬁs > «. With the
present value of dm3, this condition is, for neutrinos traversing the earth, E, > .3 GeV. The results

above thus do not apply to solar neutrinos but it does apply to atmospheric and accelerator neutrinos.

The time reversed probability P(v, — v.) is obtained from the above equation by reversing the sign of
d while for P(T. — 7,,) one reverses both the sign of A and 6. From eq. (12.33) and the above results

one can obtain the oscillation probability P(v, — v;) in matter which are stronger than v, — v, the
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dominant term being proportional to sin?(2643) rather than sin?(26:3).

e Discussion and order of magnitude of the parameters

We summarize here for later use the value of the parameters and the order of magnitude of the

h

|| xdm3, /4k xdm3, /4k xAdm3, Ak

3.1072 | .125(k/GeV) | 1074 (z/km)(k/GeV)~! | 3.2 1073 (x/km)(k/GeV)™! | 4 10~* (z/km)

Table 2: Valug of the parameters controling the neutrino oscillations in the earth mantle: |o| =
om3,/|6m2, |, A = 2v/2G kN, /|6m3,| with N, = 1.25 10** em™3, dm2, is positive and dm3, ~ dm?
is assumed. The value of the masses are taken from eq. (12.22).

oscillating factors. Omne of the experimentally unsolved question is the mass ordering, i.e. is 5m§1
positive or negative 7 Although the derivation above was done assuming this quantity positive it also
holds with dm3, < 0 keeping dm3; > 0. In that case, A is also negative but the combinations o/ A
and flém%l remain positive. Similarly to the oscillations in vacuum the difference between the two
hypothesis is the sign of the cosd term but this term is very small if 6 ~ 37/2 (see eq. (13.56)).
In matter however, since the magnitude of the oscillation depends on A one can use the energy as a
parameter to probe the hierarchy hypothesis. For example, all terms with a normalisation factor in
1/(1— A) will be sensitive to the sign of dm3, provided of course that the associated oscillating factor
x(1— A)&m%l /4k be large enough so as not to compensate the normalisation otherwise one can expand

sin(z(1 — A)om3, /4k) ~ (1 — A)sin(xdm3, /4k) and then get back the vacuum oscillation result.
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