B Charge conjugation C, space reflection P, time reversal T
B.1 Charge conjugation C
A fermion (electron) of charge e obeys the Dirac equation
(9, — eA) 7 = m) = 0. (B.1)
Looking for a plane wave solution of type eq. (2.6) we obtain

(p—ed —m)us(p) = 0, for positive energy solutions,

(F+ed+m)va(p) = 0, for negative energy solutions,

which suggests to interpret the negative energy solution as a positive energy one with charge —e, i.e.
the antiparticle (positron). The wave function of the positron should thus satisfy the same equation

as the electron with an opposite charge
(18 + eA) 7 —m)y = 0. (B.2)
The solution ¥¢ can be constructed in the following way. From the first equation above one has
(—(i0, + eA,) A —m)p* =0, (B.3)

We look for ¢ under the form

(B4)

where C is a 4 x 4 matrix. Then eq. (B.3) yields after multiplication on the left by C~Y:

(CY)(=(i0, + eAu) Y —m) (C4°) 19 =0, (B.5)
and, if one finds a matrix C such that:
(€)= =y (C"), (B.6)
then we recover eq. (B.2). In our representation of v, matrices, we have
Y=t w=0,1,3; A =k p=2, (B.7)

so that the choice of the real matrix

€)= & |[C=ir" (B.8)
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satisfy the condition (B.6) which is equivalent to:
N2 =V (B.9)
Using the relations eqs. (A.4) and (A.5), it is easy to prove
C=-Cl=-C=-CT and C/°C'=+" & my572 = (B.10)

Under charge conjugation, the wave function ¢ which satisfies eq. (B.1) becomes

W° = COU* = C = in2* & ¥ = ith vy, (B.11)

solution of eq. (B.2).
Let us first discuss free massless chiral spinors, eqgs. (3.28) and (3.30), important in the construction
of the Standard Model. The application of C parity yields:
c _ * o * _ . Xz _ XR\
(00 = € o) = 1 ) = VB 1 (N ) = —v@ (1) =l
L

(0)*(0) = € 20 i) = v i) =@ i (3 ) = () el (Baz

R

and thus, the C operator transforms the wave-function of a positive energy spinor (electron) into the
wave-function of a negative energy one (positron) of the same helicity (similar relations exist for (v )¢
and (vg)©). Recalling the definition of 91, (x), eq. (3.23),
_ d’p —ip.x | gt ip.x
Yr(x) = / 2 {bL(p) ur(p) e=P* + di(p) vr(p) €? }

its C transformed is:

(V) (w) = / m [dR(p) ug(p) e T 4 b}(p) vr,(p) eip'x] , (B.13)

which destroys a right-handed antifermion with wave-function ug(p) and creates a left-handed fermion

with vy (p). Equivalently, in a compact form, if one writes 17, = (1 — 4°)1)/2, its charge conjugate is:

1+9° 5, 1+479°
— Y =

(Yr)° =iy’ ¢} = 5

P = ()R, (B.14)

a right-handed wave-function. Likewise the C conjugate of a right-handed wave-function is left-handed

(Vr)" = S Y= (V)L (B.15)
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Going back to the general case, it is easy to show that under C parity the helicity projection operators
satisfy:

. " . 1+ 14+ ) )
iy 55 (s) = ia ( ;575{*) _ 275;0 iy = X5 (s) 072,

and the energy projection operators satisfy:

. . . +m FE+mo .
172 A (p) =172 5 = 5 1Yy = AJF(p) Y2,

where one has used the relations eq. (B.7). Thus, a solution of the Dirac equation of positive (resp.
negative) energy and given helicity becomes a solution of negative (resp. positive) energy of the same

helicity:
iva S7(s) AT (p) ¥ (p,x)) = E7(s) AT(p) v (p, ), (B.16)

It is useful to list the transformation of fermion bilinears under C. They easily derived from eqs.(B.9)
to (B.11), remembering the — sign (due to Fermi statistics) when transposing the expressions to obtain

the right hand-side, and one finds:

Us(a)i(e) = oy(x)ea(z),

P5()°Yf (@) = Py (@) (), (B.17)
V5@ Y5(x) = =y (2" Pa(w),
V5@V i) = Py (2)y" ().

B.2 Space reflection P

The space reflection, or parity transformation is defined by :
Ty — TH = T, x = x = —x. (B.18)

The transformation is parameterised in the following way

1 0 0 O
¥ =ajzt  with  a), = 8 _01 _01 8 (B.19)
0o 0 0 -1

Knowing 1 (xg,x) satisfying the free Dirac equation, we look for the form of the solution obtained

under a space reflection. We write
¢/($07 X,) = ¢/($07 _X) = Pw($07x)7 thus ¢(3§‘0,X) = 'P_lqlbl(gjo, _X) (B20)
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From the free Dirac equation

(za;; H—m)y(zg,x) =0, (B.21)

we obtain, using

0 o oz 0

Ozt - ox'v Hrt = ox'v a;VH (B.22)
0, T R o
(i = m)P~ 4 (0, X') = (irapin = m)P™ '/ (w0, %) =0, (B.23)
which leads to
(iaffv aj, PY*PH = m)y (z9,x') = 0. (B.24)

If we find a matrix P such that aj; Py* = +”P, then ' (z9,x’) will be a solution. Such a matrix

should commute with 4% and anticommute with 5. Obviously

P = e'%40 (B.25)

has such a property. Thus
P (w0, x') = "4 (0, %), P (w0, %) = e T (0, %). (B.26)

Note that the parity operator reverses the fermion helicity. Thus a massless left-handed fermion

becomes right-handed:

Pir(zo,x) = 70

= 0 (o x) = Yhleox) (.27

(where for simplicity we ignore an irrelevant phase). In terms of Dirac spinors one has:

Yo u(p) = u(—p), Y v(p) = —v(—p), (B.28)

as can be immediatly verified from eqs (3.12). It is easy to check the behavior of the fermion bilinears

under a parity transformation:

= Py(wo,x)¥1(w0,x), a scalar

= —y(z0,x)7°¢1(20,%x), a pseudoscalar (B.29)

ACTRSEACTR'S
AT SERTEACTR'S
Py (20, X' )71 (w0, x')
U (w0, X' )7 7" (w0, x)

Zo,X = GZEQ ($07 X)V“ﬂ’l (330, X)7 a vector

= —aZEQ(:EO, )Y 1 (20, %),  a pseudovector or axial vector
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B.3 Variance and invariance of the lagrangien under C and CP

From the above discussion, it is easy to obtain the transformation properties of the lagrangien. The

easiest case is that of QED:
Lopp = () (i@ — ef(x) — m)p(z). (B.30)

Under P all vectors such as x,,d,,, A}, (z') transform as a/,x,,, al;0,, al;, A, (x) and ' (xo,x" )y’ (x0,x’)
— ab(zo, x)V Y (z0,X) S0 that

P() (i — e (a') —m)y' (') (B.31)

reduces to the lagrangien above. The transformation is also very simple under C. The U(1) gauge
transformation, ¢/(z) — exp(—iea(x))y(x), implies ¥ (x) — exp(iea(r))y(z) and the U(1) gauge
invariance of Lopp leads to Af(z) = —Au(z) (use egs. (B.17) to prove the invariance). For the

derivative term it is a bit more tricky since

Te(x) if o) = o(x) v t(a) = T (@) iV O ()
= i@ it v(@) = —ui @)D, v0ir" v(a)
= U(a) "B d(z) = Dla) if V(). (B.32)

One goes from the first to the second line by transposing the expression keeping in mind the - sign for
the anticommutation of the fermions and from the second line to the last one by a partial integration
neglecting, as usual, a total derivative. This proves the invariance of the QED lagrangian under C, P

and therefore CP transformations.

On the contrary a theory with an interaction term of the form 1 (z)y*(1 — v5)(z) is not invariant
under C or P since this term becomes, up to an overall sign, ¥(x)y*(1 +v5)¥(z) (use eqs. (B.17) and
(B.29)), and one can say that there is maximum violation of these symmetries. However it is invariant
under CP. The case of the Standard Model with three generations is a bit more subtle. Consider the
charged current piece eq. (11.9) written in the mass eigenstate basis. Denoting V the CKM matrix,
with V;; = v, Vi =

v;;, the charged current is written:

e

Lp(charged current) = m a, wW;y'vd, + aLVTW;ﬂ“uL ]
w
= ¢ [ku] WAt dJ + v,]dJL W u’L]

\/isine

€ ; * j * 3] 7
= asnd. (00" Wik (1= 75) & + vfyd” Wt (1 —s) u'], (B.33)
w
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where the index 4, run over the number of fermion generations. If %) is in the fundamental represen-
tation of the unitary group G, with generators 7% the generators operating on the ¢ fields are 7%*
and the conjugate of the gauge boson is Wi = —W/ir"* = —W, so that W), <> —W under C parity
(with the definition of W, given after eq. (5.43)). Under charge conjugation, L becomes:

e i ek N ,
L% (charged current) = WS [iju® Wk (1 —5) d¥ + vijdcj Wik (1 —75) u”]
w
€ =J ] * —1 * bk ]
= Vs [vijd” Wrt (1+75) u' + vja’ Wiy (1+15) ], (B.34)
w
where we have used eqs. (B.17). If we do furthermore a P transformation on this expression we
obtain:
€ —j ] * —1 * 0k ]
LS (charged current) = T asmo [wijd W™ (1 —s) u' + v Wiyt (1 —q5) ], (B.35)
w

since, following eqgs. (B.29), the term in W, v* is invariant while W, y#~5 changes sign. This is identical
to eq. (B.33) except for the v;; « vfj factors interchanged between the two terms of the expression:
if the CKM matrix were real then the lagrangian would be invariant under CP, in other words the
phase of the CKM matrix is at the origin of CP violation in the Standard Model since all other terms

in the lagrangien are invariant under CP.

B.4 Time reflection T

The time-reflection transformation takes the coordinate x = (z¢,x) to 2’ = (—x0,x). This transfor-

mation can be written

-1 0 0 0
0 100
o Vo : vo__
x a,zt  with  ay 0 010 (B.36)
0 001
Denoting ¢/ (x') = 1'(—z0,x) the free time-reflected wave function, we attempt to construct it under
the form
V(@) =T (), = Pfa)=T W), (B.37)
where T is a 4 X 4 constant matrix and ¢ (x) is the solution of the free Dirac equation with
(st —mt () =0, = (e - mT ) =0 (B3
ox,, ’ ox!, ' '
Multiplying to the left by 7 we obtain
0 e
(—i o2l al T T~ —m)y'(2') = 0, (B.39)
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and 1/ (z') will be a solution of the Dirac equation, 4.e. will satisfy

0,
(i =)' () =0, (540
if we find a matrix such that
al T T =—4". (B.41)

Recalling that v#* = 4* for u = 0,1,3 and v?* = —+2, the above conditions reduce to 7+ = 4*T for
i=0,2and T/ = —/T, j =1,3. The matrix

T =iy'y? (B.42)

satisfies the required conditions and we have thus

Y (—x0,%) = i’yl’y?’w*(ajo, X) (B.43)

the solution for the free wave function evolving backward in time. For an interacting fermion in QED,
under time reversal the potential A’ (z') is related to A*(x) by A?(2') = A%x), Al(a') = —A¥(x),
since the current reverses sign when the arrow of time is reversed and under this condition we can

show that QED is invariant under time reversal.

Combining the symmetries P and T one can construct the wave function of an electron evolving

backward in space-time,
VPT(—x) = PTo() =1lin'+*y" ()]
= i’y (x)
= (@), (B44)
where we introduced the wave-function of the positron via eq. (B.11), Thus the wave function of a

(right-handed) positron is that of a (left-handed) electron moving backward in space-time (up to an

irrelevant phase factor).
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