
B Charge conjugation C, space reflection P, time reversal T
B.1 Charge conjugation C

A fermion (electron) of charge e obeys the Dirac equation

((i∂µ − eAµ) γ
µ −m)ψ = 0. (B.1)

Looking for a plane wave solution of type eq. (2.6) we obtain

(6p− e6A−m)uα(p) = 0, for positive energy solutions,

(6p+ e6A+m)vα(p) = 0, for negative energy solutions,

which suggests to interpret the negative energy solution as a positive energy one with charge −e, i.e.
the antiparticle (positron). The wave function of the positron should thus satisfy the same equation

as the electron with an opposite charge

((i∂µ + eAµ) γ
µ −m)ψc = 0. (B.2)

The solution ψc can be constructed in the following way. From the first equation above one has

(−(i∂µ + eAµ) γ
µ∗ −m)ψ∗ = 0. (B.3)

We look for ψc under the form

ψc = Cγ0ψ∗, (B.4)

where C is a 4× 4 matrix. Then eq. (B.3) yields after multiplication on the left by Cγ0:

(Cγ0)(−(i∂µ + eAµ) γ
µ∗ −m) (Cγ0)−1ψc = 0, (B.5)

and, if one finds a matrix C such that:

(Cγ0) γµ∗

= −γµ (Cγ0), (B.6)

then we recover eq. (B.2). In our representation of γµ matrices, we have

γµ
∗

= γµ, µ = 0, 1, 3; γµ
∗

= −γµ, µ = 2, (B.7)

so that the choice of the real matrix

(Cγ0) = iγ2 ⇔ C = iγ2γ0 (B.8)
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satisfy the condition (B.6) which is equivalent to:

γ2γµγ2 = γ∗µ. (B.9)

Using the relations eqs. (A.4) and (A.5), it is easy to prove

C = −C−1 = −C† = −CT and Cγ5C−1 = γ5 ⇔ γ2γ5γ2 = γ5. (B.10)

Under charge conjugation, the wave function ψ which satisfies eq. (B.1) becomes

ψc = Cγ0ψ∗ = CψT
= iγ2ψ∗ ⇔ ψc = iψTγ2γ0, (B.11)

solution of eq. (B.2).

Let us first discuss free massless chiral spinors, eqs. (3.28) and (3.30), important in the construction

of the Standard Model. The application of C parity yields:

(uL)
c(p) = Cγ0 u∗L(p) = iγ2 u

∗
L(p) =

√
ω iγ2

(

χ∗
L

−χ∗
L

)

= −
√
ω

(

χR

χR

)

= vL(p)

(uR)
c(p) = C γ0 u∗R(p) = iγ2 u

∗
R(p) =

√
ω iγ2

(

χ∗
R

χ∗
R

)

=
√
ω

(

−χL

χL

)

= vR(p), (B.12)

and thus, the C operator transforms the wave-function of a positive energy spinor (electron) into the

wave-function of a negative energy one (positron) of the same helicity (similar relations exist for (vL)
c

and (vR)
c). Recalling the definition of ψL(x), eq. (3.23),

ψL(x) =

∫

d3p

(2π)32ω

[

bL(p) uL(p) e
−ip.x + d†R(p) vR(p) e

ip.x
]

its C transformed is:

(ψL)
c(x) =

∫

d3p

(2π)32ω

[

dR(p) uR(p) e
−ip.x + b†L(p) vL(p) e

ip.x
]

, (B.13)

which destroys a right-handed antifermion with wave-function uR(p) and creates a left-handed fermion

with vL(p). Equivalently, in a compact form, if one writes ψL = (1− γ5)ψ/2, its charge conjugate is:

(ψL)
c = iγ2 ψ∗

L =
1 + γ5

2
iγ2ψ∗ =

1 + γ5

2
ψc = (ψc)R, (B.14)

a right-handed wave-function. Likewise the C conjugate of a right-handed wave-function is left-handed

(ψR)
c =

1− γ5
2

ψc = (ψc)L. (B.15)
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Going back to the general case, it is easy to show that under C parity the helicity projection operators

satisfy:

iγ2 Σ±∗(s) = iγ2
(1± γ5 6s∗)

2
=

(1± γ5 6s)
2

iγ2 = Σ±(s) iγ2,

and the energy projection operators satisfy:

iγ2 Λ
±∗(p) = iγ2

±6p∗ +m

2
=
∓6p+m

2
iγ2 = Λ∓(p) iγ2,

where one has used the relations eq. (B.7). Thus, a solution of the Dirac equation of positive (resp.

negative) energy and given helicity becomes a solution of negative (resp. positive) energy of the same

helicity:

iγ2 Σ
±∗(s) Λ±∗(p) ψ∗(p, x)) = Σ±(s) Λ∓(p) ψc(p, x), (B.16)

It is useful to list the transformation of fermion bilinears under C. They easily derived from eqs.(B.9)

to (B.11), remembering the − sign (due to Fermi statistics) when transposing the expressions to obtain

the right hand-side, and one finds:

ψc
2
(x)ψc

1(x) = ψ1(x)ψ2(x),

ψc
2
(x)γ5ψc

1
(x) = ψ1(x)γ

5ψ2(x), (B.17)

ψc
2
(x)γνψc

1(x) = −ψ1(x)γ
νψ2(x),

ψc
2
(x)γνγ5ψc

1
(x) = ψ1(x)γ

νγ5ψ2(x).

B.2 Space reflection P

The space reflection, or parity transformation is defined by :

x0 → x′
0
= x0, x→ x

′ = −x. (B.18)

The transformation is parameterised in the following way

x′ν = aνµx
µ with aνµ =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (B.19)

Knowing ψ(x0,x) satisfying the free Dirac equation, we look for the form of the solution obtained

under a space reflection. We write

ψ′(x0,x
′) = ψ′(x0,−x) = Pψ(x0,x), thus ψ(x0,x) = P−1ψ′(x0,−x) (B.20)
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From the free Dirac equation

(i
∂

∂xµ
γµ −m)ψ(x0,x) = 0, (B.21)

we obtain, using

∂

∂xµ
=

∂

∂x′ν
∂x′ν

∂xµ
=

∂

∂x′ν
aνµ, (B.22)

(i
∂

∂xµ
γµ −m)P−1ψ′(x0,x

′) = (i
∂

∂x′ν
aνµγ

µ −m)P−1ψ′(x0,x
′) = 0, (B.23)

which leads to

(i
∂

∂x′ν
aνµ PγµP−1 −m)ψ′(x0,x

′) = 0. (B.24)

If we find a matrix P such that aνµ Pγµ = γνP, then ψ′(x0,x
′) will be a solution. Such a matrix

should commute with γ0 and anticommute with ~γ. Obviously

P = eiφγ0 (B.25)

has such a property. Thus

ψ′(x0,x
′) = eiφγ0ψ(x0,x), ψ̄′(x0,x

′) = e−iφψ†(x0,x). (B.26)

Note that the parity operator reverses the fermion helicity. Thus a massless left-handed fermion

becomes right-handed:

PψL(x0,x) = γ0
1− γ5

2
ψ(x0,x)

=
1 + γ5

2
ψ′(x0,x

′) = ψ′
R(x0,x

′) (B.27)

(where for simplicity we ignore an irrelevant phase). In terms of Dirac spinors one has:

γ0 u(p) = u(−p), γ0 v(p) = −v(−p), (B.28)

as can be immediatly verified from eqs (3.12). It is easy to check the behavior of the fermion bilinears

under a parity transformation:

ψ′
2
(x0,x

′)ψ′
1(x0,x

′) = ψ2(x0,x)ψ1(x0,x), a scalar

ψ′
2
(x0,x

′)γ5ψ′
1
(x0,x

′) = −ψ2(x0,x)γ
5ψ1(x0,x), a pseudoscalar (B.29)

ψ′
2
(x0,x

′)γνψ′
1(x0,x

′) = aνµψ2(x0,x)γ
µψ1(x0,x), a vector

ψ′
2
(x0,x

′)γνγ5ψ′
1
(x0,x

′) = −aνµψ2(x0,x)γ
µγ5ψ1(x0,x), a pseudovector or axial vector

153



B.3 Variance and invariance of the lagrangien under C and CP

From the above discussion, it is easy to obtain the transformation properties of the lagrangien. The

easiest case is that of QED:

LQED = ψ(x)(i6∂ − e6A(x)−m)ψ(x). (B.30)

Under P all vectors such as x′µ, ∂
′
µ, A

′
µ(x

′) transform as aνµxν , a
ν
µ∂ν , a

ν
µ Aν(x) and ψ̄

′(x0,x
′)γµψ′(x0,x

′)

→ aµν ψ̄(x0,x)γ
νψ(x0,x) so that

ψ′(x′)(i6∂ ′ − e6A′(x′)−m)ψ′(x′) (B.31)

reduces to the lagrangien above. The transformation is also very simple under C. The U(1) gauge

transformation, ψ′(x) → exp(−ieα(x))ψ(x), implies ψc′(x) → exp(ieα(x))ψc(x) and the U(1) gauge

invariance of LQED leads to Ac
µ(x) = −Aµ(x) (use eqs. (B.17) to prove the invariance). For the

derivative term it is a bit more tricky since

ψc(x) i6∂ ψc(x) = ψc(x) iγµ
−→
∂µψ

c(x) = ψT (x)γ0 iγ
µ∗ −→∂µψ∗(x)

= −ψ†(x)
←−
∂µ iγ

µ†γ0 ψ(x) = −ψ†(x)
←−
∂µ γ0iγ

µ ψ(x)

= ψ(x) iγµ
−→
∂µ ψ(x) = ψ(x) i6∂ ψ(x). (B.32)

One goes from the first to the second line by transposing the expression keeping in mind the - sign for

the anticommutation of the fermions and from the second line to the last one by a partial integration

neglecting, as usual, a total derivative. This proves the invariance of the QED lagrangian under C, P
and therefore CP transformations.

On the contrary a theory with an interaction term of the form ψ(x)γµ(1 − γ5)ψ(x) is not invariant

under C or P since this term becomes, up to an overall sign, ψ(x)γµ(1+ γ5)ψ(x) (use eqs. (B.17) and

(B.29)), and one can say that there is maximum violation of these symmetries. However it is invariant

under CP . The case of the Standard Model with three generations is a bit more subtle. Consider the

charged current piece eq. (11.9) written in the mass eigenstate basis. Denoting V the CKM matrix,

with Vij = vij ,V
†
ji = v∗ij , the charged current is written:

LF (charged current) =
e√

2 sin θ
W

[u
L
W ∗

µγ
µ
V d

L
+ d

L
V

†Wµγ
µ
u

L
]

=
e√

2 sin θ
W

[viju
j
L
W ∗

µγ
µ dj

L
+ v∗ijd

j

L
Wµγ

µ ui
L
]

=
e

2
√
2 sin θ

W

[viju
i W ∗

µγ
µ (1− γ5) dj + v∗ijd

j
Wµγ

µ(1− γ5) ui], (B.33)
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where the index i, j run over the number of fermion generations. If ψ is in the fundamental represen-

tation of the unitary group G, with generators τa the generators operating on the ψc fields are τa∗

and the conjugate of the gauge boson is W c
µ = −W a

µτ
a∗ = −W ∗

µ , so that Wµ ↔ −W ∗
µ under C parity

(with the definition of Wµ given after eq. (5.43)). Under charge conjugation, LF becomes:

LCF (charged current) =
e

2
√
2 sin θ

W

[vijuc
i
W c∗

µ γµ (1− γ5) dcj + v∗ijd
cj W c

µγ
µ(1− γ5) uci]

=
e

2
√
2 sin θ

W

[vijd
j
Wµγ

µ (1 + γ5) u
i + v∗iju

i W ∗
µγ

µ∗(1 + γ5) d
j ], (B.34)

where we have used eqs. (B.17). If we do furthermore a P transformation on this expression we

obtain:

LCPF (charged current) =
e

2
√
2 sin θ

W

[vijd
j
Wµγ

µ (1− γ5) ui + v∗iju
i W ∗

µγ
µ∗(1− γ5) dj ], (B.35)

since, following eqs. (B.29), the term inWµγ
µ is invariant whileWµγ

µγ5 changes sign. This is identical

to eq. (B.33) except for the vij ↔ v∗ij factors interchanged between the two terms of the expression:

if the CKM matrix were real then the lagrangian would be invariant under CP , in other words the

phase of the CKM matrix is at the origin of CP violation in the Standard Model since all other terms

in the lagrangien are invariant under CP .

B.4 Time reflection T

The time-reflection transformation takes the coordinate x = (x0,x) to x′ = (−x0,x). This transfor-

mation can be written

x′ν = aνµx
µ with aνµ =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (B.36)

Denoting ψ′(x′) ≡ ψ′(−x0,x) the free time-reflected wave function, we attempt to construct it under

the form

ψ′(x′) = T ψ∗(x), ⇒ ψ∗(x) = T −1ψ′(x′), (B.37)

where T is a 4× 4 constant matrix and ψ(x) is the solution of the free Dirac equation with

(−i ∂

∂xµ
γµ∗ −m)ψ∗(x) = 0, ⇒ (−i ∂

∂x′ν
aνµγ

µ∗ −m)T −1ψ(x′) = 0. (B.38)

Multiplying to the left by T we obtain

(−i ∂

∂x′ν
aνµT γµ∗T −1 −m)ψ′(x′) = 0, (B.39)
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and ψ′(x′) will be a solution of the Dirac equation, i.e. will satisfy

(i
∂

∂x′ν
γν −m)ψ′(x′) = 0, (B.40)

if we find a matrix such that

aνµT γµ∗T −1 = −γν . (B.41)

Recalling that γµ∗ = γµ for µ = 0, 1, 3 and γ2∗ = −γ2, the above conditions reduce to T γi = γiT for

i = 0, 2 and T γj = −γjT , j = 1, 3. The matrix

T = iγ1γ3 (B.42)

satisfies the required conditions and we have thus

ψ′(−x0,x) = iγ1γ3ψ∗(x0,x) (B.43)

the solution for the free wave function evolving backward in time. For an interacting fermion in QED,

under time reversal the potential A′µ(x′) is related to Aµ(x) by A′0(x′) = A0(x), Ai(x′) = −Ai(x),

since the current reverses sign when the arrow of time is reversed and under this condition we can

show that QED is invariant under time reversal.

Combining the symmetries P and T one can construct the wave function of an electron evolving

backward in space-time,

ψPT (−x) = PT ψ(x) = γ0[iγ1γ3ψ∗(x)]

= γ5iγ2ψ∗(x)

= γ5ψ
c(x), (B.44)

where we introduced the wave-function of the positron via eq. (B.11), Thus the wave function of a

(right-handed) positron is that of a (left-handed) electron moving backward in space-time (up to an

irrelevant phase factor).
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