
2 The Fermi theory and its extensions

At the beginning was the Fermi theory of muon decay :

µ− → e− νe νµ.

and neutron decay :

n→ p e− νe.

In the latter case we work in the quark/parton model where we assume the nucleon is made of three

quarks : neutron = (udd) and proton = (uud). For neutron decay, charge conservation allows only

the transition d→ u e− νe, the other two quarks being spectators.

d

u e−

ν̄e

µ−

νµ e−

ν̄e

neutron decay µ−decay

2.1 Contact interactions

These transitions are described by a local current-current (4 fermion) interaction parameterised by

the Lagrangian:

L =
GF√
2
Jν(x)J†

ν (x). (2.1)

The current has a leptonic part and a hadronic part, Jν(x) = lν(x) + hν(x),

lν(x) = ψeγν(1− γ
5
)ψνe + ψµγν(1− γ

5
)ψνµ + ψτγν(1− γ

5
)ψντ

hν(x) = ψdγν(1− γ
5
)ψu + ψsγν(1− γ

5
)ψc + ψbγν(1− γ

5
)ψt, (2.2)

where, for simplicity, the argument of the fermion fields are not shown, ψe instead ψe(x), · · · . The

γ5 matrix anticommutes with all γν ’s (see the appendix for the properties of the γ5 matrix). The

particular V − A (vector (γν) − axial (γνγ5)) form of the current is dictated by experiment, in

particular the angular distribution of particles in the final state1. The Fermi constant GF is universal,

1The γνγ5 interaction breaks parity maximally, see sec.B.2 in the appendix.
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i.e. it is the same for the hadronic sector and the leptonic sector and its value has been measured to

be :

GF = 1.6639(2)10−5 GeV−2. (2.3)

Thus the transition matrix element for µ decay is an element in (G/
√
2)lν(x)l†ν(x) constructed from

the first two terms of lν(x):

M =
GF√
2
(ψeγν(1− γ

5
)ψνe)(ψµγ

ν(1− γ
5
)ψνµ)

†

=
GF√
2
(ψeγν(1− γ

5
)ψνe)(ψνµγ

ν(1− γ
5
)ψµ) (2.4)

and that of neutron decay (d quark decay) is an element of (G/
√
2)lν(x)h†ν(x):

M =
GF√
2
(ψeγν(1− γ

5
)ψνe)(ψdγ

ν(1− γ
5
)ψu)

†

=
GF√
2
(ψeγν(1− γ

5
)ψνe)(ψuγ

ν(1− γ
5
)ψd). (2.5)

Introducing the expansion of a spinor ψi in terms of plane waves with annihilation operators b
(α)
i (p)

and d
(α)
i (p) for a positive energy and negative energy particle respectively (α is the polarisation index):

ψi(x) =

∫

d3p

(2π)32ω
ψi(p, x)

=

∫

d3p

(2π)32ω

∑

α

[

b
(α)
i (p) uiα(p) e

−ip.x + d
(α)†
i (p) viα(p) e

ip.x
]

, p.x = ωt− p.x, (2.6)

where the uiα(p) and viα(p) are, respectively, the wave functions of the annihilated fermion (positive

energy) and the created antifermion (negative energy). Injecting eq. (2.6) into the matrix element

above, we see that eq. (2.5) describes several processes related by crossing symmetry such as: d →
u e− ν̄e (term in ūu · · · ud ūe · · · vνe) or d ū→ e− ν̄e (term in v̄u · · · ud ūe · · · vνe) or νe d→ e− u (term

in ūu · · · ud ūe · · · uνe) or · · · . Considering the last process which is the dominant mechanism for the

deep inelastic scattering of a neutrino on a proton one can easily calculate the cross section at the

partonic level. Defining the momenta by νe(p1) d(p2) → e−(p3) u(p4), the invariants are

(p1+p2)
2 = s, (p1−p3)2 = t = q2 = (s/2)(1− cos θ), (p1−p4)2 = u = (s/2)(1+cos θ). (2.7)

Supposing all fermions massless, the matrix element is (ignoring the polarisation indices):

M =
GF√
2
[ūe(p3)γ

µ(1− γ
5
)uνe(p1)] [ūu(p4)γµ(1− γ

5
)ud(p2)], (2.8)
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and the matrix element squared summed/averaged over polarisation is

Σ|M|2 =
1

4

G2
F

2
4 Tr(6p3γµ 6p1γν(1− γ5))Tr(6p4γµ 6p2γν(1− γ5))

=
G2

F

2
[Tr(6p3γµ 6p1γν)Tr(6p4γµ 6p2γν) + Tr(6p3γµ 6p1γνγ5)Tr(6p4γµ 6p2γνγ5)]. (2.9)

The traces and their product can be easily evaluated using eqs. (A.9) and (A.10) in appendix A. There

is no mixing between the trace with a γ5 matrix and that without since the former is antisymmetric

in µν and the latter is symmetric. After reduction the result is simple:

Σ|M|2 = 4 G2
F [(s2 + u2) + (s2 − u2)] = 8 G2

F s2, (2.10)

where the first term in the square brackets corresponds to the first term (V −A interaction) in eq. (2.9).

The differential cross section is2:

dσ

dΩ

νed→e−u

=
1

2s

∫

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)(p1 + p2 − p3 − p4)
(

Σ|M|2
)

=

{

1

(2π)2
1

16s

}

(8 G2
F s2)

=
G2

F

8π2
s, (2.11)

independent of the polar angle. This result is in agreement with the data at not too high s. It is

also interesting to consider in the Fermi model the diffusion of antineutrinos on the proton. In the

quark/parton model, because of charge conservation, the ν̄e interacts only with the u quarks via the

transition ν̄e(p1) u(p2) → e+(p3) d(p4). The matrix element can easily be constructed and it is:

M =
GF√
2
[v̄νe(p1)γ

µ(1− γ
5
)ve(p3)] [ūd(p4)γµ(1− γ

5
)uu(p2)]. (2.12)

Taking the square of the matrix element one obtains eq. (2.9) with p1 and p3 interchanged. Because

Tr(6p3γµ 6p1γν) is symmetric and Tr(6p3γµ 6p1γνγ5) antisymmetric under this interchange, one sees im-

mediately that Σ|M|2 = 4 G2
F [(s2+u2)− (s2−u2)] = 8 G2

F u2 and consequently the differential cross

section is found to be:

dσ

dΩ

ν̄eu→e+d

=
G2

F

8π2
u2

s
=

G2
F

8π2
s

4
(1 + cos θ)2 (2.13)

also in agreement with experimental observations where the positron is produced mainly in the direc-

tion of the initial ν̄e quark.

2The term in {· · · } is the phase space factor for massless particles.
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If instead of the V − A form of the currents we had used only the vector part the results would be

in disagreement with data since for both cross sections above, eqs (2.11) and (2.13), the result would

have been :

dσ

dΩ
=

G2
F

64π2
s2 + u2

s
, (2.14)

a prediction not supported by experiments because of the wrong angular distribution for both reactions.

If one had tried ”scalar currents” of the form:

l(x) = ψeψνe + ψµψνµ + · · ·

h(x) = ψdψu + ψsψc + · · · , , (2.15)

both ν and ν̄ cross sections would have been proportional to s : this prediction is correct for

νe d→ e− u but incorrect for ν̄e u→ e+ d. In summary, all low energy data support the V − A

form to describe weak interactions.

However the Fermi theory is not satisfactory at high energy. Indeed, from eq. (2.11) one obtains

for the total cross section σνed→e−u = G2
F s/2π. However such a rapid rise of the cross section with

energy cannot be asymptotically true as it violates the famous Froissart unitarity bound which requires

σ ≤ ln2 s as s → ∞. Note that the linear rise in s of a 2 → 2 cross section integrated over all final

state variables could have easily been guessed on dimensional grounds. Indeed, in Fermi theory, such

a cross section is proportional to G2
F of dimension GeV−4 but a cross section3 is measured in units

of GeV−2. Since, after integrating over the final state phase space, the only scale available in the

problem is s, of dimension GeV2, one necessarily has σ ∝ G2
F s.

2.2 Vector boson mediated interactions

The rapid rise of cross sections is related to the locality of the current-current interaction. One can

make the 4-fermion interaction nonlocal by postulating a massive charged particle coupling to the

Jµ(x) current similarly to the coupling of a photon to the fermionic current ψ̄(x)γµψ(x) to mediate

the interaction between the currents. It must be a vector particle because of the γµ coupling in eq.

(2.2) as shown below

3We work in the system where ~ = c = 1.
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W exchangeFermi

e−

ud ud

W

e−

Denoting M
W

the mass of this particle and g
W

its dimensionless coupling to the currents, the matrix

element eq. (2.5) becomes :

M = g2
W
[ψeγµ(1− γ

5
)ψνe ]

gµν − qµqν/M2
W

q2 −M2
W

[ψuγν(1− γ
5
)ψd] (2.16)

where q is the momentum transfer from the d quark to the u quark. Coming back to the reaction

νe(p1) d(p2) → e(p3) u(p4) studied above, the matrix element eq. (2.8), in momentum space is (we do

not write explicitely the polarisation index of the fermions):

M = g2
W
[ūe(p3)γµ(1− γ

5
)uνe(p1)]

gµν − qµqν/M2
W

q2 −M2
W

[ūu(p4)γν(1− γ
5
)ud(p2)]

=
g2
W

q2 −M2
W

[ūe(p3)γµ(1− γ
5
)uνe(p1)] [ūu(p4)γ

µ(1− γ
5
)ud(p2)], (2.17)

with q = p1 − p3 = p4 − p2 and where we have used Dirac equation for massless fields 6piu(pi) = 0.

This equation is identical to eq (2.8) provided we make the substitution:

GF√
2
=

g2
W

q2 −M2
W

→
g2
W

M2
W

when q2 → 0, (2.18)

which allows to obtain the matrix element squared summed/averaged over polarisation from eq. (2.8):

Σ|M|2 = 16 g4
W

s2

(q2 −M2
W
)2
, (2.19)

and the differential cross section :

dσ

dΩ

νed→e−u

=
g4
W

4π2
s

(q2 −M2
W
)2
, (2.20)

with q2 = −s(1− cos θ)/2. The integrated cross section is easily calculated to be:

σνed→e−u =
1

π

g4
W

M2
W

s

s+M2
W

. (2.21)

At low energy we recover the Fermi model prediction provided, g2
W
/M2

W
= GF

√
2, while at high energy

the Froissart bound is satisfied.
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2.3 Still more problems!

However this is not the end of the story ! The W particle can be produced, and has been produced at

LEP2, in the reaction e− e+ → W− W+ but the corresponding cross section, in our model, violates

Froissart bound. To see this, let us consider instead the unrealistic, but simpler, case4 of the scattering

νe(p1) ν̄e(p2) →W+(p3)W
−(p4) the amplitude of which is given by only one Feynman diagram with

the exchange of an electron:

νe

ν̄e

W+

W−

p1

p2

p3

p4

e−

To illustrate the problem we first define the kinematics and make some comments on the polarisation

states of a massive vector particle. We work at very high energy in the center of mass frame of the

e− e+ system :

(p1 + p2)
µ = (

√
s,0), pµ1 = (

√
s

2
, 0, 0,

√
s

2
), pµ2 = (

√
s

2
, 0, 0,−

√
s

2
). (2.22)

We take p3 and p4 in the xOz plane:

pµ3 = (E3, p3 sin θ, 0, p3 cos θ), E3 =
√
s/2, p3 =

√

s/4−M2
W

(2.23)

Unlike the photon which has two transverse polarisation states theW particle being massive has three

degrees of polarisation.

• Polarisation of a massive spin 1 particle

In the rest frame of a massive particle, p = (M,0) the polarisation is described by space-like vectors.

A basis of such vectors is given by

ε(1)µ = (0, 1, 0, 0), ε(2)µ = (0, 0, 1, 0), ε(3)µ = (0, 0, 0, 1), (2.24)

satisfying ε(i).ε(j) = −δij as well as p.ε(i) = 0 for i, j = 1, 2, or 3.

4For e− e
+ there are two diagrams

e−

e+

W−

W+

p1

p2

p3

p4

γ

W−

W+

νe

, and this complicates the discussion.
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Important remark

For a boson W with momentum p, the polarisation vectors become functions of p, ε(i)µ(p), satisfying

the same conditions as above, namely ε(i)(p).ε(j)(p) = −δij as well as p.ε(i)(p) = 0. One often needs,

in the propagator for example,

Pµν =
∑

i

ε(i)µ(p) ε(i)ν(p) = −
(

gµν − pµpν

M2
W

)

. (2.25)

The last equality is easily derived knowing that the rank 2 tensor Pµν depends only on the vector pµ

so that it is of the form agµν + bpµpν : the conditions p2 = M2
W
, pµPµν = pνPµν = 0 and Pµ

µ = −3

then determine a and b as given in eq. (2.25).

If the bosonW has its momentum along the z-axis, p = (E, 0, 0, p) the polarisation vectors are boosted

to:

ε(1)µ = (0, 1, 0, 0), ε(2)µ = (0, 0, 1, 0) transverse polarisations (2.26)

ε(3)µ =
1

M
W

(p, 0, 0, E) longitudinal polarisation. (2.27)

For a boson W with a momentum making an angle θ in the zOx plane one simply has to make a

rotation around the Oy axis, p = (E, p sin θ, 0, p cos θ), and the polarisation vectors become:

ε(1)µ(p) = (0, cos θ, 0,− sin θ), ε(2)µ(p) = (0, 0, 1, 0) transverse polarisations (2.28)

ε(3)µ(p) =
1

M
W

(p, p sin θ, 0, E cos θ) longitudinal polarisation. (2.29)

In the high energy limit, in the frame of eqs. (2.22), E ≃ p ≃ √
s/2 ≫ M

W
, the longitudinal

polarisation vector simplifies to:

ε(3)µ(p) ≈ 1

M
W

(
√
s/2,

√
s/2 sin θ, 0,

√
s/2 cos θ) ≈ pµ

M
W

. (2.30)

We use this approximation in the calculaion below. For convenience we introduce the notation

ε(1)µ or ε(2)µ = εµ
T
, and ε(3)µ = εµ

L
.

In contrast, we recall that a massless spin 1 particle has only two states of transverse polarisation.

• Production of massive vector bosons

After all these kinematic preliminaries we turn to the evaluation of the matrix element. Remembering
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the γµ(1 − γ5) coupling of the W boson to the fermions, the matrix element for the diagram above

with the electron exchange is:

Mij = −2ig2
W

v̄(p2) 6ε(j)(p4)(6p1 − 6p3) 6ε(i)(p3)(1− γ5)u(p1)

(p1 − p3)2
(2.31)

where we have pushed the (1 − γ5) factors to the right, hence the factor 2. Without doing the

calculation explicitely one can guess that the matrix element squared will contain terms of the form :

|Mij |2 ∝
g4
W

((p1 − p3)2)2
{(p1.ε(i)(p3) p2.ε(j)(p4))2, · · · , (pk.pl) (p1.ε(j)(p3))2 ε(j)

2
(p4), · · · ,

(pk.pl) (pm.pn) (ε
(i)(p3).ε

(j)(p4))
2, · · · }, (2.32)

with pk, pl, · · · any of the external momenta. In the limit
√
s ≫ M

W
, it is easy to see that, if both

polarisation vectors are transverse, all expressions such as:

p1.εT (p3) p2.εT (p4) ∝ (p1.εT (p3))
2 ∝ s, (2.33)

since all components of the transverse polarisation vectors are of order 1 and the momenta are gener-

ically of order
√
s. If, on the contrary, both W ′s are longitudinally polarised, the components of the

polarisation vectors being of O(
√
s/M

W
) one finds:

p1.εL(p3) p2.εL(p4) ∝ ((p1.εL(p3))
2 ∝ s2

M2
W

. (2.34)

In consequence (p1.p3 ∝ s),

|MTT |2 ∝ g4
W
, and |MLL|2 ∝ g4

W

s2

M4
W

. (2.35)

Asymptotically the matrix element squared for the production of longitudinal bosons grows very fast

while it is bounded in the case of transverse bosons. Since integrating over phase space to obtain the

total cross section brings a factor 1/s (see eq. (2.11)) we expect the production of two longitudinal

W ’s to violate unitarity. To calculate effectively this cross section, one has to be a bit more refined

and to go back to eq. (2.31) using the form eq. (2.30) for the polarisation vectors:

MLL = −i
g2
W

M2
W

v̄(p2) 6p4
[ 6p4 − 6p2
(p2 − p4)2

+
6p1 − 6p3
(p1 − p3)2

]

6p3(1− γ5)u(p1), (2.36)

where we have used the trivial equality p1 − p3 = p4 − p2. Anticommuting the matrices so as to bring

6 p1 close to u(p1) and use the Dirac equation 6 p1u(p1) = 0 and similarly for 6 p2 and v̄(p2) we end up
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with:

MLL = −i
g2
W

M2
W

v̄(p2)

[

M2
W

− 2p2.p4

(p2 − p4)2
6p3+ 6p4

2p1.p3 −M2
W

(p1 − p3)2

]

(1− γ5)u(p1)

= −i
g2
W

M2
W

v̄(p2) [ 6p3− 6p4] (1− γ5)u(p1) (2.37)

Averaging on the initial polarisations one finds:

Σ|MLL|2 =
1

4

g4
W

M4
W

2 Tr(6p2(6p3− 6p4) 6p1(6p3− 6p4)(1 − γ5))

= 2
g4
W

M4
W

Tr(6p2 6p3 6p1 6p3(1− γ5))

= 16
g4
W

M4
W

p1.p3 p2.p3 =
g4
W

M4
W

s2(1− cos2 θ), (2.38)

in the limit s ≫ M2
W
. It is then easy to obtain the differential cross section using the phase space

factor of eq. (2.11) and then the integrated cross section for νe ν̄e →WL WL:

σ(νeν̄e →W+
L W

−
L ) =

g4
W

24π

s

M4
W

. (2.39)

In contrast one can estimate the cross section of νe ν̄e →WT WT (but it is more tedious and is left as

an exercise):

σ(νeν̄e →W+
T W

−
T ) ∝

g4
W

M2
W

when s→ ∞. (2.40)

We thus find that the production of longitudinally polarised vector bosons violates the unitarity limit

while that of transverse bosons is well behaved at high energies. Several ways have been tried to cure

this problem: among them one can mention the hypothesis of a new heavy lepton (fig. 1b) and choose

its couplings to enforce a proper behaviour of the cross section at high energies. It turns out that

νe

ν̄e

W+

W−

p1

p2

p3

p4

e−

νe

ν̄e

W+

W−

E−

W+

W−

νe

ν̄e

Z

(a) (b) (c)

Figure 1: Possible Feynman diagrams for νeνe →W+W− scattering. (a): e exchange; (b) hypothetical
heavy electron E exchange; (c) neutral vector boson Z exchange.

another possibility, namely that of a heavy neutral vector boson, denoted Z (fig. 1c), is realised in
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Nature. Assuming the Z coupling to the fermions of type g
Z
γµ(a− bγ5

) and to the charged W bosons

of type5 g′
Z
(pρ

W+
−pρ

W−

)gµν + · · · , they can be chosen to make cross sections such as νe ν̄e →W+ W−,

e+ e− →W+ W−, · · · asymptotically well behaved. However, this patch up job is not yet sufficient to

have a satisfactory model. Indeed, keeping fermion masses and considering for exemple e+ e− → Z Z

scattering one finds an interference piece in the cross section ∼ g4me

√
s/M4

Z
which again violates

unitarity! Similar problems arise in the W W scattering process, e.g. W+ W− →W+ W− which are

studied at LHC or will be in the future e+e− high energy linear colliders: the cross sections for these

processes diverge linearly in s. These problems can be solved by supposing the existence of a scalar

particle which interacts with the bosons as well as the fermions with appropriately chosen couplings.

One can thus construct a viable electroweak theory in the pedestrian way described above, carefully

choosing masses and couplings of the newly introduced particles so as to ensure the correct behaviour

of all cross sections. It is more instructive however to assume that these relations among masses and

couplings arise from some symmetry property. This is what is done next. Before doing that, one

should discuss the implications of the γµ(1−γ5) coupling in the weak interactions compared to the γµ

coupling of electrodynamics Then we describe in some details the symmetry group assuming global

then local gauge invariance. At this level, the chosen group requires all fields to be massless. The

theory is renormalisable (well behaved at asymptotic energies) being a non-abelian field theory. Then,

by the mechanism of “spontaneous symmetry breaking” whereby the symmetry of the lagrangian is

preserved but the choice of a ground state breaks the symmetry, fermions and gauge bosons acquire a

mass. After symmetry breaking, the theory remains renormalisable as a consequence of the underlying

gauge invariance which imposes the required relations between couplings. One is left however with a

large number of parameters (at least 18 for the Standard Model with massless neutrinos and 25 with

massive neutrinos) which gives a motivation for a (still unsuccessful!) search of a deeper symmetry.

5Dimensional arguments and gauge invariance lead to such a choice.
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