3 Fermions, chirality, helicity
3.1 Fermions : chirality

We saw that the Fermi model involves charged transitions such as 947, (1 — 75 )ty ou ey, (1 —75)1y, ,
i.e. charged currents of a particular type : the fermion interacts only through the combination

(1 — ~v5)1. We can always write :

1+

b by = — Ly (31)

L =5
2

Y=t +dy,  with =

The spinors 1_ and 14 have a definite chirality defined by their transformation when applying s :

V5 Y- = =P, V5 Y4 =Yy (3.2)
Y_, Y4+ have negative, positive chirality respectively. The combinations
1— 1
pr==2 Pt % (3.3)

are projection operators satisfying:
Pt+P =1, PtP =0, (PT)? = PT, (P7)2=P. (3.4)

Only negative chirality fermions are sensitive to the weak interactions. It is useful to note that:

—_zl+m

=g, g=g (35)

2

3.2 Fermions : positive and negative energy solutions

When using the plane wave decomposition of the spinor, eq. (2.6), the free Dirac equation (i@ —m)i =
0 implies:

(ﬂ - m) ua(p) =0, (ﬁ_‘_ m) 'Ua(p) =0 (3'6)

on the positive (uq exp(—ipz), see eq. (2.6)) and negative (v, exp(ipx)) energy component respectively.

At rest, p = 0, and using the Dirac representation of v, matrices given in appendix, they reduce to:

e - (5 8)(%)-

m(7° + 1)v, = ( 21)12 8 > ( ;a > =0 (3.7)

where we have introduced the 2-component spinors :

(1 (0 _{ Xa _( 0 _
X1—<0>, X2—<1> and ua—<0>, va—<Xa>, a=1,2. (3.8)



Since one has 73y1 = x1, T>x2 = —X2 one says that y; has spin up and y» spin down and®

1 3 1— 3
tT and T

(3.9)

are respectively the spin up and spin down projection operators for the 2-component spinors. When
p # 0, to obtain the spinors u,(p) and v, (p) one can apply a Lorentz boost to the solution in the rest

frame or, more simply, observe that:

1 1
uq(p) = \/ﬁ(iﬂ‘ m)ua, va(p) = m(—iﬂ‘ m)va, (3.10)

satisfy egs. (3.6) respectively. The factor 1/y/w + m is the chosen normalisation factor such that:

o (p) us(p) = 2m dap, ul,(p) up(p) = 2w Gag,
Ua(p) vp(p) = —2m dag, vl () va(p) = 2w Gap. (3.11)

Explicitely, one has in terms of two component spinors:

walp) = e (W) = A (BT ) )

The solution u,(p) is the positive energy spinor while v, (p) is called the negative energy one with
momentum (—w, —p). In particular, for a boost of magnitude 7 in the z direction, the positive energy

spinors have momentum p = (w, 0,0, p,), with w = mcoshn, p, = msinhn, and they become:

w+m 0
w = (U ) s wp= 2 | 0 | = [
' s
while the negative energy solutions with momentum —p are:
, Pz 0
0np) = e ((ﬁm’;;a) s |, L | == | | e

0 w+m

In general, it is useful to introduce operators which project out positive and negative energy states.

They are defined by: p
+p+m

A
+ 2m

: (3.15)

5The Pauli matrices 7° are given in appendix A.
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and they satisfy the required relations:

A(p)+Ar(p) =1, A-(PA:(p) =A:(A-(p) =0, (A-(0)>=A-(p), A+(@)>=A(p).
(3.16)

Thus A11(p, x) respectively project the positive and negative energy solutions of ¢(x) in eq. (2.6).
We discuss in appendix B.1 the interpretation of the negative energy solution as a positive energy

antiparticle.

3.3 Fermions : helicity

When applying a boost along the z-axis one does not change the orientation of the fermion spin, as
shown in the figure below, so that the projection of the fermion spin along the momentum is positive
for ui(p) (spin up) and negative for us(p) (spin down) : one says that uq(p) has positive helicity or is

right-handed and is denoted by ug(p), while us(p) has negative helicity or is left-handed and is denoted
by ur(p).

AP AP

helicity—+ helicity—

u1(p) us(p)

For the negative energy solutions the situation is opposite and v1(p) = vz (p) has negative helicity or

is left-handed and v (p) = vr(p) has positive helicity or is right-handed as shown below
—-p —-Pp

helicity— helicity+

v1(p) v2(p)

\ \J

For a spinor of momentum p one defines the helicity projection operator

Lo 1T P (T O . P
s = (7 0) -t (317)
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with P the unit vector in the direction of the momentum. Applying these operators to the positive

energy spinors one finds ((7p)% = 1):

. - 1 (w+m)(1+7P)xa
SE(P)ualp) = 72\/w+—m< D1+ 1By > (3.18)

If p is in the direction of Oz, the helicity projection operators applied on the spinors reduce to

. _ 1 (w4 m)(1+73)Xa
S*(P)ualp) = 72\/w+—m< P(E1 4+ 72)xs ) (3.19)

showing that wu(p) is right-handed, and wus(p) is left-handed as found before. For negative energy
spinors, since they have momentum —p, ST (—p) projects out positive helicity and S~ (—p) projects

our negative helicity. The operators S* are helicity projection operators and satisfy:
(S (p)*=5%(p), ST(P)S (p)=0, ST(P)+5 (p)=1> (3.20)

e Massless spinors : helicity and chirality
In the Standard Model, at high energy, quarks of light flavours and neutrinos are often treated as

massless. Considering massless spinors with a generic momentum p one has:

ua(p):\/c_u< Xa ) va(p):\@<f"7'x“>, a=1or?2. (3.21)

P-T Xa Xa

When acting on positive energy spinors u, (p), the helicity projection operator and P*, the chirality

projection operators of eq. (3.3), give the same result:

SE(B) ua(p) = PEualp) = @ < ($1i+7-ff),;<>?a ) C a=12,

This shows that positive chirality and right-handed helicity are the same and likewise for negative

chirality and left-handed helicity. For spinors v,(p) one finds instead:

+ N _ _@ (:F1+TIA))X0¢ o=
SECpl) = Prual) =57 (TN ) azie,

thus a right-handed negative energy spinor has negative chirality and a left-handed one positive chi-

rality. Thus if one constructs a massless spinor u(p) as a linear combination of u,,a = 1,2, then

ur(p) = w u(p) and ugr(p) = w u(p) are respectively left-handed and right-handed spinors,
while vz, (p) = % v(p) is left-handed and vg(p) = @ v(p) right-handed, so helicity = chirality
for positive energy spinors but helicity = — chirality for negative energy ones .
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To summarise, in the massless case, from the definition of ¢(z) in eq. (2.6), the combination

¢L($) _ 1 — 75

5 V(@) (3.22)

- destroys a left-handed fermion, with wave function uy(p) and creates a right-handed antifermion

with wave function vg(p), egs. (3.28), (3.30),

3 . .
o) = [ st ) uso) € 4 dh(p) va) e (323)
and mutatis mutandis:
V(@) = 522 (a) (3.24)

- destroys a right-handed fermion, with wave function ugr(p) and creates a left-handed antifermion

with wave function vr (p).

3 . .
(o) = [ st (o) wn(p) €7+ d o) oulo) 7] (3.25)

Thus, the Fermi interaction, discussed in the previous section, concerns only left-handed fermions and

right-handed antifermions.

e Massless chiral spinors
It is easy and amusing (as well as useful for neutrino physics) to find the explicit form of mass-
less chiral spinors of arbitrary momentum. For instance, for positive energy spinors one has, using

expressions (3.12) :
V5 ur(p) = ur(p) = D.T Xr = XR
V5 uL(p) = —ur(p) = P.T XL = —XL, (3.26)

for right-handed and left-handed spinors respectively. Solving for p.7 x = £, we get the 2-component

spinors after proper normalisation:

cos g e_i% —sin g e‘lg
XR = .o e XL = 0 2 s (3-27)
sin 5 e'2 cos 5 €'2
and thus,
antp) = v5 (11) wlp) = va (). (329)
XR XL

One follows the same procedure for negative energy spinors, but since their momentum is —p they

satisfy
¥5 vr(p) = —vr(P), ¥5 vr(p) = vL(p) (3.29)
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and, compared to the u(p) spinors, the role of xr and x, is interchanged so that:
vr(p) = vV (‘XL> vr(p) = —Vw (XR> , (3.30)
XL XR
The relations XEXR = XEXL =1, XJ;%XL = XEXR = 0 ensure that egs. (3.11) are satisfied.

e Massive spinors : helicity and chirality

In general, if in the rest-frame of the fermion the polarisation direction is given by the vector s = (0, s)

with s> = —1, s.p = 0, the spin projection operators along or opposite s are given, in a covariant form,
by
1+
S (s) = 275’51. (3.31)

Specifying to the helicity, the spin projection along or opposite the fermion momentum, one defines

s=(

SRS

)

p), with p=[p| and p=2, (3.32)
p

(which satisfies the conditions s? = —1,s.p = 0) and ¥*(s) takes the form:

1 m+ wp.T F
+ p p
X5 (s) = 2m < +p m F wp.T ) ’ (3.33)

The form of the projectors X*(s) is different from the helicity projection operators defined in eq.

(3.17) but when acting on positive energy spinors u(p), one shows that:
55 (s) ta(p) = SE(B) ualp), @ =1,2 (3.34)

Thus, for positive energy spinors, ¥ projects out right-handed states and X~ the left-handed ones.

Similarly, when acting on negative energy spinors v(p), one finds that,
25 (s)va(p) = S (D) valp), a=1,2 (3.35)

related to the fact that negative energy spinors carry momentum —p. Thus, again, ¥ projects out
the right-handed helicity state and ¥~ the left-handed ones.

For massive spinors at very high energy if one uses (1 £ ~5)/2 as helicity projection operators rather
than X*(s), with s as defined in eq. (3.32), the error made is of O(m/w)".

"A negative chirality massive fermion at very high energy will be mainly left-handed with a small admixture, of
O(m/w), of the right-handed component, and vice-versa.
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In summary, it is easy to see that the fermion wave-functions:

%{g(p’ ) = YT(s) ]Zj;mm Y(p, ) destroys a right-handed fermion

7/’{ (p,x) = X7 (s) ﬁ;—mm Y(p, ) destroys a left-handed fermion

?ﬁé(p’ ) = YT(s) _]Z# Y(p,x) creates a right-handed antifermion

Tﬂ{(p, x) = X (s) _IZ# Y(p,x) creates a left-handed antifermion. (3.36)

This summary will prove useful when discussing C and CP violation later.

Application

The helicity arguments above and conservation of angular momentum are useful to understand /pre-
dict the angular dependence of a process governed by the ~,(1 — 75) interaction which carries total
angular momentum 1 (L = 0,5 = 1). For example, coming back to the processes v, d — e~ u and
Veu — e d, egs. (2.8) and (2.12), the leptonic transition is given by ¥, 7, (1 — 75)¢y, = 2 Ve, Vutbvy
or its hermitian conjugate Eue’m(l —Y5)e = 2 EUGL’y,ﬂ/JeL. From eq. (3.23), we see that these transi-
tions involve only left-handed leptons or right-handed antileptons. Likewise, from the E[ﬂ“(l —5) Wy
or Euyu(l — 75)1q interactions, only left-handed quarks or right-handed antiquarks are allowed. In
the scattering v, d — e~ u only left-handed leptons and quarks are involved. If 8 denotes the angle
between the incoming and outgoing leptons in the v d center of mass frame, the spin projection of
the system along the axis of motion of the particles is 0 because each particle has a negative helicity
and they move in opposite directions (see the figure). Therefore we expect no angular dependence
for the cross section, in agreement with eq. (2.11). On the contrary, for the scattering 7, u — et d
the antileptons being right-handed and the quarks left-handed the spin projection of the antilepton-
quark system along the direction of motion of the antilepton is always 1 : for a forward produced
et the angular momentum projection along the z axis is 1 for both initial and final states and thus
is conserved while for a backward produced e (§ = ) the spin projection of the final system along
the z axis is -1, and angular momentum is not conserved, consequently the matrix element vanishes.
From Clebsh-Gordan tables® the associated angular distribution is proportional to di;(#) ~ 1+ cos 0,

in agreement with eq. (2.13).

8See, Clebsh-Gordan coefficients, spherical harmonics and d-functions in Particle Data group, C. Patrignani et. al.,
Chin. Phys. C40 (2016) 100001 (http://pdg.1bl.gov).
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Similar arguments can be applied to v /7 scattering on quarks or antiquarks and, then, one can easily

derive egs. (2.11), (2.13).

We note the useful relations :

_ 1 _
b = g Yy (1 —95)¢
VY = Yrydn + YR, YR = YRyt =0
v = Ypir+ Yrig, Yrtr = VL = 0. (3.37)

25



	Fermions, chirality, helicity
	Fermions : chirality
	Fermions : positive and negative energy solutions
	Fermions : helicity


