
3 Fermions, chirality, helicity

3.1 Fermions : chirality

We saw that the Fermi model involves charged transitions such as ψ̄dγµ(1−γ5)ψu ou ψ̄eγµ(1−γ5)ψνe ,

i.e. charged currents of a particular type : the fermion interacts only through the combination

(1− γ5)ψ. We can always write :

ψ = ψ− + ψ+, with ψ− =
1− γ5

2
ψ, ψ+ =

1 + γ5
2

ψ (3.1)

The spinors ψ− and ψ+ have a definite chirality defined by their transformation when applying γ5 :

γ5 ψ− = −ψ−, γ5 ψ+ = ψ+. (3.2)

ψ−, ψ+ have negative, positive chirality respectively. The combinations

P− =
1− γ5

2
, P+ =

1 + γ5
2

(3.3)

are projection operators satisfying:

P+ + P− = 1, P+P− = 0, (P+)2 = P+, (P−)2 = P−. (3.4)

Only negative chirality fermions are sensitive to the weak interactions. It is useful to note that:

ψ− = ψ
1 + γ5

2
, ψ+ = ψ

1− γ5
2

. (3.5)

3.2 Fermions : positive and negative energy solutions

When using the plane wave decomposition of the spinor, eq. (2.6), the free Dirac equation (i6∂−m)ψ =

0 implies:

(6p −m) uα(p) = 0, (6p+m) vα(p) = 0 (3.6)

on the positive (uα exp(−ipx), see eq. (2.6)) and negative (vα exp(ipx)) energy component respectively.

At rest, p = 0, and using the Dirac representation of γµ matrices given in appendix, they reduce to:

m(γ0 − 1)uα ⇒
(

0 0
0 −2112

)(

χα

0

)

= 0

m(γ0 + 1)vα ⇒
(

2112 0
0 0

)(

0
χα

)

= 0 (3.7)

where we have introduced the 2-component spinors :

χ1 =

(

1
0

)

, χ2 =

(

0
1

)

and uα =

(

χα

0

)

, vα =

(

0
χα

)

, α = 1, 2. (3.8)
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Since one has τ3χ1 = χ1, τ
3χ2 = −χ2 one says that χ1 has spin up and χ2 spin down and6

1 + τ3

2
and

1− τ3

2
(3.9)

are respectively the spin up and spin down projection operators for the 2-component spinors. When

p 6= 0, to obtain the spinors uα(p) and vα(p) one can apply a Lorentz boost to the solution in the rest

frame or, more simply, observe that:

uα(p) =
1√

ω +m
(6p+m)uα, vα(p) =

1√
ω +m

(−6p+m)vα, (3.10)

satisfy eqs. (3.6) respectively. The factor 1/
√
ω +m is the chosen normalisation factor such that:

ūα(p) uβ(p) = 2m δαβ, u†α(p) uβ(p) = 2ω δαβ ,

v̄α(p) vβ(p) = −2m δαβ, v†α(p) vβ(p) = 2ω δαβ . (3.11)

Explicitely, one has in terms of two component spinors:

uα(p) =
1√

ω +m

(

(ω +m) χα

p.τ χα

)

, vα(p) =
1√

ω +m

(

p.τ χα

(ω +m) χα

)

. (3.12)

The solution uα(p) is the positive energy spinor while vα(p) is called the negative energy one with

momentum (−ω,−p). In particular, for a boost of magnitude η in the z direction, the positive energy

spinors have momentum p = (ω, 0, 0, pz), with ω = m cosh η, pz = m sinh η, and they become:

uα(p)=
1√

ω +m

(

(ω +m)χα

pzτ
3 χα

)

⇒ u1(p)=
1√

ω +m









ω +m
0
pz
0









, u2(p)=
1√

ω +m









0
ω +m

0
−pz









,

(3.13)

while the negative energy solutions with momentum −p are:

vα(p)=
1√

ω +m

(

pz τ
3 χα

(ω +m)χα

)

⇒ v1(p)=
1√

ω +m









pz
0

ω +m
0









, v2(p)=
1√

ω +m









0
−pz
0

ω +m









. (3.14)

In general, it is useful to introduce operators which project out positive and negative energy states.

They are defined by:

Λ± =
±6p+m

2m
, (3.15)

6The Pauli matrices τ i are given in appendix A.
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and they satisfy the required relations:

Λ−(p) + Λ+(p) = 1 , Λ−(p)Λ+(p) = Λ+(p)Λ−(p) = 0 , (Λ−(p))
2 = Λ−(p) , (Λ+(p))

2 = Λ+(p) .

(3.16)

Thus Λ±ψ(p, x) respectively project the positive and negative energy solutions of ψ(x) in eq. (2.6).

We discuss in appendix B.1 the interpretation of the negative energy solution as a positive energy

antiparticle.

3.3 Fermions : helicity

When applying a boost along the z-axis one does not change the orientation of the fermion spin, as

shown in the figure below, so that the projection of the fermion spin along the momentum is positive

for u1(p) (spin up) and negative for u2(p) (spin down) : one says that u1(p) has positive helicity or is

right-handed and is denoted by uR(p), while u2(p) has negative helicity or is left-handed and is denoted

by uL(p).

u1(p) u2(p)

helicity+ helicity−

p p

For the negative energy solutions the situation is opposite and v1(p) = vL(p) has negative helicity or

is left-handed and v2(p) = vR(p) has positive helicity or is right-handed as shown below

v1(p) v2(p)

helicity− helicity+

−p −p

For a spinor of momentum p one defines the helicity projection operator

S±(p̂) =
1± T . p̂

2
, T =

(

τ 0
0 τ

)

, p̂ =
p

|p| (3.17)
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with p̂ the unit vector in the direction of the momentum. Applying these operators to the positive

energy spinors one finds ((τ p̂)2 = 1):

S±(p̂)uα(p) =
1

2
√
ω +m

(

(ω +m)(1± τ p̂)χα

p(±1 + τ p̂)χα

)

. (3.18)

If p̂ is in the direction of Oz, the helicity projection operators applied on the spinors reduce to

S±(p̂)uα(p) =
1

2
√
ω +m

(

(ω +m)(1± τ3)χα

p(±1 + τ3)χα

)

, (3.19)

showing that u1(p) is right-handed, and u2(p) is left-handed as found before. For negative energy

spinors, since they have momentum −p, S+(−p̂) projects out positive helicity and S−(−p̂) projects

our negative helicity. The operators S± are helicity projection operators and satisfy:

(S±(p))2 = S±(p), S+(p)S−(p) = 0, S+(p) + S−(p) = 112 (3.20)

• Massless spinors : helicity and chirality

In the Standard Model, at high energy, quarks of light flavours and neutrinos are often treated as

massless. Considering massless spinors with a generic momentum p one has:

uα(p) =
√
ω

(

χα

p̂.τ χα

)

, vα(p) =
√
ω

(

p̂.τ χα

χα

)

, α = 1 or 2. (3.21)

When acting on positive energy spinors uα(p), the helicity projection operator and P±, the chirality

projection operators of eq. (3.3), give the same result:

S±(p̂)uα(p) = P± uα(p) =

√
ω

2

(

(1± τ p̂)χα

(±1 + τ p̂)χα

)

, α = 1, 2 ,

This shows that positive chirality and right-handed helicity are the same and likewise for negative

chirality and left-handed helicity. For spinors vα(p) one finds instead:

S±(−p̂) vα(p) = P∓ vα(p) =

√
ω

2

(

(∓1 + τ p̂)χα

(1∓ τ p̂)χα

)

, α = 1, 2 ,

thus a right-handed negative energy spinor has negative chirality and a left-handed one positive chi-

rality. Thus if one constructs a massless spinor u(p) as a linear combination of uα, α = 1, 2, then

uL(p) = (1−γ5)
2 u(p) and uR(p) = (1+γ5)

2 u(p) are respectively left-handed and right-handed spinors,

while vL(p) =
(1+γ5)

2 v(p) is left-handed and vR(p) =
(1−γ5)

2 v(p) right-handed, so helicity = chirality

for positive energy spinors but helicity = − chirality for negative energy ones .
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To summarise, in the massless case, from the definition of ψ(x) in eq. (2.6), the combination

ψL(x) =
1− γ5

2
ψ(x) (3.22)

- destroys a left-handed fermion, with wave function uL(p) and creates a right-handed antifermion

with wave function vR(p), eqs. (3.28), (3.30),

ψL(x) =

∫

d3p

(2π)32ω

[

bL(p) uL(p) e
−ip.x + d†R(p) vR(p) e

ip.x
]

(3.23)

and mutatis mutandis:

ψR(x) =
1 + γ5

2
ψ(x) (3.24)

- destroys a right-handed fermion, with wave function uR(p) and creates a left-handed antifermion

with wave function vL(p).

ψR(x) =

∫

d3p

(2π)32ω

[

bR(p) uR(p) e
−ip.x + d†L(p) vL(p) e

ip.x
]

(3.25)

Thus, the Fermi interaction, discussed in the previous section, concerns only left-handed fermions and

right-handed antifermions.

• Massless chiral spinors

It is easy and amusing (as well as useful for neutrino physics) to find the explicit form of mass-

less chiral spinors of arbitrary momentum. For instance, for positive energy spinors one has, using

expressions (3.12) :

γ5 uR(p) = uR(p) ⇒ p̂.τ χR = χR

γ5 uL(p) = −uL(p) ⇒ p̂.τ χL = −χL, (3.26)

for right-handed and left-handed spinors respectively. Solving for p̂.τ χ = ±χ, we get the 2-component

spinors after proper normalisation:

χR =

(

cos θ
2 e

−i
φ

2

sin θ
2 e

i
φ

2

)

χL =

(

− sin θ
2 e

−i
φ

2

cos θ
2 e

i
φ

2

)

, (3.27)

and thus,

uR(p) =
√
ω

(

χR

χR

)

uL(p) =
√
ω

(

χL

−χL

)

, (3.28)

One follows the same procedure for negative energy spinors, but since their momentum is −p they

satisfy

γ5 vR(p) = −vR(p), γ5 vL(p) = vL(p) (3.29)
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and, compared to the u(p) spinors, the role of χR and χL is interchanged so that:

vR(p) =
√
ω

(

−χL

χL

)

vL(p) = −
√
ω

(

χR

χR

)

, (3.30)

The relations χ†
RχR = χ†

LχL = 1, χ†
RχL = χ†

LχR = 0 ensure that eqs. (3.11) are satisfied.

• Massive spinors : helicity and chirality

In general, if in the rest-frame of the fermion the polarisation direction is given by the vector s = (0, s)

with s2 = −1, s.p = 0, the spin projection operators along or opposite s are given, in a covariant form,

by

Σ±(s) =
1± γ5 6s

2
. (3.31)

Specifying to the helicity, the spin projection along or opposite the fermion momentum, one defines

s = (
p

m
,
ω

m
p̂), with p = |p| and p̂ =

p

p
, (3.32)

(which satisfies the conditions s2 = −1, s.p = 0) and Σ±(s) takes the form:

Σ±(s) =
1

2m

(

m± ωp̂.τ ∓p
±p m∓ ωp̂.τ

)

. (3.33)

The form of the projectors Σ±(s) is different from the helicity projection operators defined in eq.

(3.17) but when acting on positive energy spinors u(p), one shows that:

Σ±(s)uα(p) = S±(p̂)uα(p), α = 1, 2 (3.34)

Thus, for positive energy spinors, Σ+ projects out right-handed states and Σ− the left-handed ones.

Similarly, when acting on negative energy spinors v(p), one finds that,

Σ±(s) vα(p) = S±(−p̂) vα(p), α = 1, 2 (3.35)

related to the fact that negative energy spinors carry momentum −p. Thus, again, Σ+ projects out

the right-handed helicity state and Σ− the left-handed ones.

For massive spinors at very high energy if one uses (1± γ5)/2 as helicity projection operators rather

than Σ±(s), with s as defined in eq. (3.32), the error made is of O(m/ω)7.

7A negative chirality massive fermion at very high energy will be mainly left-handed with a small admixture, of
O(m/ω), of the right-handed component, and vice-versa.
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In summary, it is easy to see that the fermion wave-functions:

ψf
R(p, x) = Σ+(s)

6p+m

2m
ψ(p, x) destroys a right-handed fermion

ψf
L(p, x) = Σ−(s)

6p+m

2m
ψ(p, x) destroys a left-handed fermion

ψf̄
R(p, x) = Σ+(s)

−6p+m

2m
ψ(p, x) creates a right-handed antifermion

ψf̄
L(p, x) = Σ−(s)

−6p+m

2m
ψ(p, x) creates a left-handed antifermion. (3.36)

This summary will prove useful when discussing C and CP violation later.

Application

The helicity arguments above and conservation of angular momentum are useful to understand/pre-

dict the angular dependence of a process governed by the γµ(1 − γ5) interaction which carries total

angular momentum 1 (L = 0, S = 1). For example, coming back to the processes νe d → e− u and

νe u→ e+ d, eqs. (2.8) and (2.12), the leptonic transition is given by ψeγµ(1− γ5)ψνe = 2 ψeL
γµψνeL

or its hermitian conjugate ψνeγµ(1− γ5)ψe = 2 ψνeL
γµψeL . From eq. (3.23), we see that these transi-

tions involve only left-handed leptons or right-handed antileptons. Likewise, from the ψdγµ(1− γ5)ψu

or ψuγµ(1 − γ5)ψd interactions, only left-handed quarks or right-handed antiquarks are allowed. In

the scattering νe d → e− u only left-handed leptons and quarks are involved. If θ denotes the angle

between the incoming and outgoing leptons in the ν d center of mass frame, the spin projection of

the system along the axis of motion of the particles is 0 because each particle has a negative helicity

and they move in opposite directions (see the figure). Therefore we expect no angular dependence

for the cross section, in agreement with eq. (2.11). On the contrary, for the scattering νe u → e+ d

the antileptons being right-handed and the quarks left-handed the spin projection of the antilepton-

quark system along the direction of motion of the antilepton is always 1 : for a forward produced

e+ the angular momentum projection along the z axis is 1 for both initial and final states and thus

is conserved while for a backward produced e+ (θ = π) the spin projection of the final system along

the z axis is -1, and angular momentum is not conserved, consequently the matrix element vanishes.

From Clebsh-Gordan tables8 the associated angular distribution is proportional to d111(θ) ≃ 1 + cos θ,

in agreement with eq. (2.13).

8See, Clebsh-Gordan coefficients, spherical harmonics and d-functions in Particle Data group, C. Patrignani et. al.,
Chin. Phys. C40 (2016) 100001 (http://pdg.lbl.gov).
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νe

e−

d

u

θ

z z

ν̄e

e+

u

d

θ

Similar arguments can be applied to ν/ν scattering on quarks or antiquarks and, then, one can easily

derive eqs. (2.11), (2.13).

We note the useful relations :

ψLγµψL =
1

2
ψγµ(1− γ5)ψ

ψγµψ = ψLγµψL + ψRγµψR, ψLγµψR = ψRγµψL = 0

ψψ = ψRψL + ψLψR, ψRψR = ψLψL = 0. (3.37)
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