
5 The local SU(2)L ⊗U(1)Y gauge invariance : interactions

The local SU(2) transformation, acting on the left-handed doublets only, is defined by

Ψ′
L
→ U(x)Ψ

L
= ei gα(x)·τ/2Ψ

L
, Ψ′

L
→ Ψ

L
U †(x) = Ψ

L
e−i gα(x)·τ/2, (5.1)

with UU † = 1, or, for an infinitesimal transformation,

δΨ
L
= i g α(x) · τ

2
Ψ
L
, δΨ

L
= −i g ψ

L
α(x) · τ

2
, (5.2)

where the 3 components of the real parameter α(x) are functions of the space-time coordinates. We

have introduced a coupling g associated to this transformation. Under the local transformation the

lagrangian density (4.15) is no longer invariant because of the derivative term in ∂µα(x)

δLF = ΨeL{−g(∂µα(x)) · τ
2
}γµΨeL +ΨqL{−g(∂µα(x)) · τ

2
}γµΨqL (5.3)

To recover the invariance of LF under this transformation one introduces a multiplet (a triplet) of

gauge vector fields W
µ(x) = (W µ

1 (x),W
µ
2 (x),W

µ
3 (x)) and defines the covariant derivative operating

only on the left-handed fields :

Dµ
L = ∂µ − igWµ(x), with Wµ(x) =

τ

2
·Wµ(x). (5.4)

The transformation properties of Wµ(x) are chosen such that the lagrangian density

LF = Ψe
L
6DL ΨeL +ΨqL 6DL ΨqL + ψe

R
6∂ ψeR + ψuR 6∂ ψuR + ψdR 6∂ ψdR (5.5)

is invariant under an SU(2) transformation. Since the right-handed fields are not affected by the

transformation it is enough to impose that Dµ
LΨ(x) transforms as Ψ(x) to achieve the invariance of

the lagrangian:

(Dµ
LΨ(x))′ = U(x)(Dµ

LΨ(x)). (5.6)

Therefore,

(Dµ
LΨ(x))′ = (Dµ

L)
′U(x)Ψ(x)) = U(x)Dµ

LΨ(x), (5.7)

implies

(Dµ
L)

′ = U(x)Dµ
LU

−1(x), (5.8)

since it should hold for all Ψ(x). Consequently, using ∂µU−1(x) = (∂µU−1(x)) + U−1(x)∂µ, one finds

(Dµ
L)

′ = ∂µ + U(x)(∂µU−1(x))− igU(x)Wµ(x)U−1(x), (5.9)
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which can be written as (Dµ
L)

′ = ∂µ − igW ′µ(x) with

W ′µ(x) =
i

g
U(x)(∂µU−1(x)) + U(x)Wµ(x)U−1(x) (5.10)

Restricting to the infinitesimal transformations eq. (5.2), one obtains

W ′µ(x)−Wµ(x) = δWµ(x) = ∂µα(x) · τ
2
+ ig [α(x) · τ

2
,Wµ(x)], (5.11)

which, in terms of SU(2) components, is equivalent to

δ W µ
i (x) = ∂µαi(x)− g ǫijk αj(x) W

µ
k (x). (5.12)

spinor we have D
′µ
L U = UDµ

L, hence eq. (5.8).

To construct the kinetic term of the gauge bosons W µ
i (x) we first consider, as in QED, the tensor

Fµν(x) = [Dµ
L(x),D

ν
L(x)] (5.13)

Using Leibnitz rule ∂µW
ν
i (x) = (∂µW

ν
i (x)) +W ν

i (x)∂µ it is easy to show that the tensor is given by

Fµν(x) = ∂µWν(x)− ∂νWµ(x)− ig[Wµ(x),Wν(x)] (5.14)

or in components

Fµνi (x) = ∂µW ν
i (x)− ∂νW µ

i (x) + g ǫijk W
µ
j (x)W

ν
k (x). (5.15)

The transformation property of Fµν(x) is obviously the same as that of Dµ
L, eq. (5.8), and we have

then F ′µν(x) = UFµν(x)U−1 so that

TrFµν(x)Fµν(x) =
1

2
Fµνi (x)Fiµν(x) (5.16)

is a Lorentz scalar invariant under a gauge transformation by the property of cyclicity of the trace.

Furthermore it has the right dimension to be the kinetic term of the W µ
i bosons. The lagrangian of

left-handed fields becomes then :

LFL = −1

4
Fµνi (x)Fiµν(x) + ΨeLiD

µ
LγµΨeL +ΨqLiD

µ
LγµΨqL . (5.17)

where each of the three terms is invariant under a local SU(2) transformation. We note at this point

the perfect analogy between the construction of the “weak” lagrangian with that of QCD: the differ-

ences are in the choice of group which requires here only three vector bosons while for SU(3) symmetry

eight bosons had to be introduced. Also, the SU(2) group acts only on the left handed components
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of the fields and consequently the W µ
i (x) gauge bosons do not couple to the right handed fermion

components.

We now make the U(1)Y gauge transformation local. It is defined by

δΨeL = ig′
ye
L

2
β(x) ΨeL , δΨqL = ig′

yq
L

2
β(x) ΨqL

δe
R
= ig′

ye
R

2
β(x) e

R
,

δu
R
= ig′

yu
R

2
β(x) u

R
, δd

R
= ig′

yd
R

2
β(x) d

R
, (5.18)

with g′ the coupling associated to the U(1) transformation. To keep the invariance of the lagrangien

requires the introduction of another vector boson Bµ(x) to which are associated covariant derivatives

generating couplings of Bµ(x) to fermions. Because the fermions carry different hypercharges we

introduce covariant derivatives appropriate for each right-handed field : acting on field ψ
R
(ψ = e, u, d)

it is11

Dµ
ψ
R
= ∂µ − i g′

yψR

2
Bµ, (5.19)

while for the left handed fields the covariant derivative eq. (5.4) acquires a new piece and becomes :

Dµ
ψ
L
= ∂µ − i g

τ

2
·Wµ − i g′

yψL

2
Bµ. (5.20)

The stress-energy tensor of the new vector field is simply :

Kµν(x) = ∂µBν(x)− ∂νBµ(x) (abelian field). (5.21)

In summary, the initial free lagrangian eq. (4.15) becomes, after imposing a SU(2) local symmetry

on the left-handed fields and an appropriate U(1) invariance on both the left-handed fields and a

right-handed ones,

L = LG + LF = −1

4
Fiµν(x) F

µν
i (x)− 1

4
Kµν(x) Kµν(x)

+ ΨeL i 6DeL ΨeL +ΨqL i 6DqL ΨqL+

+ e
R
i 6DeR e

R
+ u

R
i 6DuR uR + d

R
i 6DdR d

R
(5.22)

where only the (e, νe) and (u, d) quark family has been specified. It is important to point out that

the SU(2)L ⊗ U(1)Y invariance imposes that all fermions are massless. Indeed a fermion mass term

11The left and right covariant derivatives generically defined as D
µ
L, D

µ
R are now denoted D

µ
ψ
L

, D
µ
ψ
R

since they depend

on the quantum numbers of the fermion fields ψ
L
, ψ

R
.
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in the lagrangian would have the form

Lmass = m ψψ = m(Ψ
L
ψ
R

+ ψ
R
Ψ
L
). (5.23)

But since Ψ
L
is a doublet and ψ

R
a singlet under SU(2), the mass term cannot be invariant under a

gauge transformation!

It is useful to separate the lagrangian density eq. (5.22) into a free part

L0F + L0G = ΨeL i 6∂ ΨeL +ΨqL i 6∂ ΨqL + e
R
i 6∂ e

R
+ u

R
i 6∂ u

R
+ d

R
i 6∂ d

R
(5.24)

−1

4
[(∂µWν(x)−∂νWµ(x)) · (∂µWν(x)−∂νWµ(x)) + (∂µBν(x)−∂νBµ(x)) (∂µBν(x)−∂νBµ(x))],

and an interacting part containing all terms depending on the couplings g and g′. It contains two

classes of terms : one describing the fermion-gauge bosons interactions (which can be expressed very

easily in terms of the currents introduced above) and the other the W boson self interactions

LIF+LIG = g J
µ(x) ·Wµ(x) + g′

JµY (x)

2
Bµ(x) (5.25)

−g
2
ǫijk(∂µWiν(x)− ∂νWiµ(x))W

µ
j (x)W

ν
k (x)−

g2

4
ǫijkWjµ(x)Wkν(x) ǫilmW

µ
l (x)W

ν
m(x)

with J
µ the weak isospin current of eq. (4.20) and JµY the hypercharge current of eq. (4.24). One

recognizes in the sum of these two terms the expression which lead to the construction of the electro-

magnetic current in eq. (4.25).

5.1 Fermion-boson interactions, construction of the photon and the Z boson

We turn first to the fermion-Wµ interaction. It is read off from LIF and is simply

g J
µ(x) ·Wµ(x) =

g

2

(

ΨeLγ
µτiΨeL +ΨqLγ

µτiΨqL

)

Wiµ. (5.26)

Defining the charged vector fields

(W±)µ(x) =
(W µ

1 (x)∓ iW µ
2 (x))√

2
, with (W+∗)µ(x) = (W−)µ(x) (5.27)

their interaction with the fermions can be easily obtained from the charge changing part of the currents

(Jµ1 (x), J
µ
2 (x)) in eq. (5.26) and we find

LIF (charged current) =
g√
2
(νeL γ

µ e
L
W+
µ + u

L
γµ d

L
W+
µ + h.c.) (5.28)

=
g

2
√
2
(νeγ

µ(1− γ5) eW
+
µ + u γµ(1− γ5) dW

+
µ + h.c.), (5.29)
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which is now expressed in terms of the usual fermion fields νe, e, u, d. One can thus read off the W±

coupling to fermions : using standard techniques it is found to be −i(g/2
√
2)γµ(1−γ5), coupling with

the same strength to all fermion species. (Note the relation g/2
√
2 = g

W
of eq. (2.16)).

Turning now to the neutral vector bosons sector one has two pieces : one originates from the SU(2)L

invariance, namely gJµ3W3µ contained in eq. (5.26), and the other one from the U(1)Y invariance,

g′JµYBµ. From eq. (5.25) we can read off the neutral current interaction lagrangian which is

LIF (neutral currents) = gJµ3W3µ + g′
1

2
JµYBµ (5.30)

Note that the photon cannot be identified to the W3µ field because of the γ5 term in the coupling

nor to the Bµ boson because of the different charge assignment for the left and right component of a

fermion field. The photon will be constructed as a linear combination of both. Thus, introducing the

fields Aµ and Zµ such that

Bµ = cos θ Aµ − sin θ Zµ

W µ
3 = sin θ Aµ + cos θ Zµ, (5.31)

with θ an adjustable parameter, one finds

LIF (neutral currents) = (g sin θJµ3 + g′ cos θ
1

2
JµY )Aµ + (g cos θJµ3 − g′ sin θ

1

2
JµY )Zµ. (5.32)

To construct the field Aµ as the photon field we should adjust the parameters to be such that

g sin θJµ3 + g′ cos θ
1

2
JµY = eJµemg (5.33)

where, by convention, e is taken as the charge of the proton. This can be achieved if we choose

g sin θ = g′ cos θ = e (5.34)

since, then, we recover eq. (4.26) which lead to eq. (4.25) for Jµemg. With this choice, we have

JµY /2 = Jµemg − Jµ3 which is used to eliminate in the coefficient of Zµ the hypercharge current so that

the interaction lagrangien reads

LIF (neutral currents) = eJµemgAµ +
e

sin θ cos θ
(Jµ3 − sin2 θJµemg)Zµ, (5.35)

defining the couplings of the photon Aµ(x) and the neutral Zµ(x) boson to the fermions. Concerning

the Zµ couplings we can be more explicit and derive them for a pair of fermions ψ1, ψ2 of charge
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e1, e2 (normalised to the proton charge e) respectively, such that (ψ1L, ψ2L) forms a SU(2) doublet

(I = 1/2) and ψ1R, ψ2R are singlets (I = 0). Writing explicitely the currents Jµ3 and Jµemg, we have

from eq. (5.35):

e

sin θ cos θ

[

(ψ1L ψ2L)

(

1/2 − e1 sin
2 θ 0

0 −1/2− e2 sin
2 θ

)

6Z
(

ψ1L

ψ2L

)

+(ψ1R ψ2R)

(

−e1 sin2 θ 0
0 −e2 sin2 θ

)

6Z
(

ψ1R

ψ2R

)]

=
e

sin θ cos θ

[

(ψ1 ψ2)

(

1/2− e1 sin
2 θ 0

0 −1/2− e2 sin
2 θ

)

6Z (1− γ5)

2

(

ψ1

ψ2

)

+(ψ1 ψ2)

(

−e1 sin2 θ 0
0 −e2 sin2 θ

)

6Z (1 + γ5)

2

(

ψ1

ψ2

)]

=
e

sin θ cos θ

[

(ψ1 ψ2)

(

1/4− e1 sin
2 θ 0

0 −1/4− e2 sin
2 θ

)

6Z
(

ψ1

ψ2

)

−(ψ1 ψ2)

(

1/4 0
0 −1/4

)

6Z γ5

(

ψ1

ψ2

)]

(5.36)

The full neutral current interaction lagrangian density eq. (5.35) can then be written for one generation

of quarks and leptons

LIF (neutral currents) = −e e 6A e+
e

sin θ cos θ

∑

l=ν,e

l 6Z (al − blγ5
) l

+ e
∑

q=u,d

eq q 6A q +
e

sin θ cos θ

∑

q=u,d

q 6Z (aq − bqγ5
)q

(5.37)

with

ai =
I3
2

− ei sin
2 θ, bi =

I3
2
. (5.38)

Contrary to the photon which has a purely vector coupling to the fermions, the neutral gauge boson

Zµ has both vector and axial-vector couplings. We recall that with the choice of g = e/ cos θ the

charged Wµ couplings are

LIF (charged current) =
e

2
√
2 sin θ

(νeγ
µ(1− γ5) eW

+
µ + u γµ(1− γ5) dW

+
µ + h.c.), (5.39)

These couplings are in agreement with those of the physical Z boson once the ”weak mixing” or

Weinberg angle θ (in fact introduced by Glashow!) is taken from experiment to be :

sin2 θ ∼ .2313 . (5.40)

We herafter denote the weak mixing angle by θ
W
.
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• The covariant derivative in terms of the Aµ, Zµ,W
±
µ fields

It is useful, for later use, to have an explicit representation of the covariant derivatives eqs. (5.19)

and (5.20) in terms of the W±
µ , Aµ and Zµ gauge bosons. Although they can be read off the previous

discussion based on defining the electromagnetic current we construct them directly. For instance, the

covariant derivative eq. (5.20) acting on a SU(2) doublet of fields with hypercharge yφ, the components

of which having electric charge (ee1, ee2), contains the piece

− ig
τ3
2
W3µ − ig′

yφ
2
Bµ = −i

[

(g sin θ
W

τ3
2

+ g′ cos θ
W

yφ
2
)Aµ + (g cos θ

W

τ3
2

− g′ sin θ
W

yφ
2
)Zµ

]

(5.41)

For Aµ to be the photon one imposes the conditions

1
2 (g sin θW + g′yφ cos θW ) = e e1 g′yφ cos θW = e(e1 + e2) g′ cos θ

W
= e

⇒ ⇒
1
2(−g sin θW + g′yφ cos θW ) = e e2 g sin θ

W
= e(e1 − e2) = e g sin θ

W
= e,

(5.42)

where the rightmost equalities are a consequence, eq. (4.29), of the Gell-Mann/Nishijima relation.

Eliminating g, g′, yφ in favour of e, θ
W

and the charges one finds

− ig
τ3
2
W3µ − ig′

yφ
2
Bµ = −ie

(

e1Aµ 0
0 e2Aµ

)

− i e

sin θ
W
cos θ

W

(

1
2 − e1 sin

2 θ
W
Zµ 0

0 −1
2 − e2 sin

2 θ
W
Zµ

)

Going back to the full expression, eq. (5.20), including the W±
µ contribution, the covariant derivative

on a doublet field is

Dµ = ∂µ − i
e√

2 sin θ
W

(

0 W+
µ

W−
µ 0

)

− ie

(

e1Aµ 0
0 e2Aµ

)

− i
e

sin θ
W
cos θ

W

(

(12 − e1 sin
2 θ

W
)Zµ 0

0 (−1
2 − e2 sin

2 θ
W
)Zµ

)

(5.43)

Since, by definition, W−∗
µ = W+

µ , from now on we use the notation W−
µ = Wµ and W+

µ = W ∗
µ to

respectively represent the wave functions of the W− and W+ gauge bosons.

The covariant derivative acting on a singlet φ is simply

Dµ = ∂µ − ig′
yφ
2
Bµ = ∂µ − ie e

φ
Aµ + i

e e
φ
sin2 θ

W

sin θ
W
cos θ

W

Zµ (5.44)

5.2 Gauge bosons and their self-interactions

We already identified in eq. (5.24) the free gauge boson pieces L0G and in eq. (5.25) the interacting

terms LIG. We now reformulate these expressions in terms of the ”physical” fields W ∗
µ ,Wµ, Zµ and
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Aµ. For this purpose we rewrite L0G by doing an integration by part and neglecting, as usual, the

terms which are total derivatives, we find

L0G =
1

2
Wiµ(x)DµνW iν(x) +

1

2
Bµ(x)DµνBν(x), (5.45)

with Dµν = �gµν − ∂µ∂ν . This is rewritten in a matrix form

L0G =
1

2
(W1µ W2µ)

(

Dµν 0
0 Dµν

)(

W1µ

W2µ

)

+
1

2
(W3µ Bµ)

(

Dµν 0
0 Dµν

)(

W3µ

Bµ

)

. (5.46)

We go from the W3µ, Bµ coordinates to the Aµ, Zµ coordinates by a rotation matrix R, eq. (5.31),

and since RTR = 1, we can immediately replace (W3µ Bµ) by (Aµ Zµ) in the equation above. Now

we go from the W1µ,W2µ components to the charged W ’s ones via the matrix O defined by

(

W1µ

W2µ

)

=

(

1√
2

1√
2

i√
2

−i√
2

)

(

W ∗
µ

Wµ

)

, (5.47)

which satisfies OTO =

(

0 1
1 0

)

so that we can immediately write

L0G =
1

2
[W ∗

µ(x)DµνWν(x) +Wµ(x)DµνW ∗
ν (x)] +

1

2
Zµ(x)DµνZν(x) +

1

2
Aµ(x)DµνAν(x)

= −1

4
K∗
µνKµν − 1

4
KµνK∗µν − 1

4
K
ZµνKµν

Z
− 1

4
K
AµνKµν

A
, (5.48)

where in the last line we have dropped a total derivative and where the K∗µν ,Kµν ,Kµν
Z
,Kµν

A
are re-

spectively the abelian-like stress-energy tensors, eq. (5.21), of the W±, Z,A gauge bosons.

We turn now to the interaction lagrangian density LIG eq. (5.25). Permuting µ ↔ ν, j ↔ k in the

term ǫijk∂νWiµ(x)W
µ
j (x)W

ν
k (x) one obtains

LIG = −g ǫijk∂µWiν(x)W
µ
j (x)W

ν
k (x)−

g2

4
ǫijkWjµ(x)Wkν(x) ǫilmW

µ
l (x)W

ν
m(x). (5.49)

The term linear in g can be written

− g det

∣

∣

∣

∣

∣

∣

∂µW1ν W µ
1 W ν

1

∂µW2ν W µ
2 W ν

2

∂µW3ν W µ
3 W ν

3

∣

∣

∣

∣

∣

∣

. (5.50)

Adding i×the second line to te first one to reconstruct W ∗
µ and taking into account the fact that a

determinant is invariant when adding or subtracting lines (eventually multiplied by a constant factor)
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one obtains for the expression (5.50)

−g det

∣

∣

∣

∣

∣

∣

√
2∂µW

∗
ν

√
2W ∗µ √

2W ∗ν

∂µW2ν W µ
2 W ν

2

∂µW3ν W µ
3 W ν

3

∣

∣

∣

∣

∣

∣

= − g

2 i
det

∣

∣

∣

∣

∣

∣

√
2∂µW

∗
ν

√
2W ∗µ √

2W ∗ν

2 i∂µW2ν 2 iW µ
2 2 iW ν

2

∂µW3ν W µ
3 W ν

3

∣

∣

∣

∣

∣

∣

= i g det

∣

∣

∣

∣

∣

∣

∂µW
∗
ν W ∗µ W ∗ν

∂µWν W µ W ν

∂µW3ν W µ
3 W ν

3

∣

∣

∣

∣

∣

∣

. (5.51)

The last equality is obtained by subtracting the first line from the second. Then using W3ν =

sin θ
W
Aµ + cos θ

W
Zµ and the relation e = g sin θ

W
(eq. (5.34)), the above expression becomes

i e det

∣

∣

∣

∣

∣

∣

∂µW
∗
ν W ∗µ W ∗ν

∂µWν W µ W ν

∂µAν Aµ Aν

∣

∣

∣

∣

∣

∣

+ i e
cos θ

W

sin θ
W

det

∣

∣

∣

∣

∣

∣

∂µW
∗
ν W ∗µ W ∗ν

∂µWν W µ W ν

∂µZν Zµ Zν

∣

∣

∣

∣

∣

∣

. (5.52)

Expanding the determinant we find for the γW+W− vertex

− i e [∂µW
∗
ν (W

µAν −AµW ν)− ∂µWν(W
∗µAν −AµW ∗ν) + ∂µAν(W

∗µW ν −W−µW ∗ν)], (5.53)

By assigning a definite index to each field, e.g. Aλ,W ρ,W ∗σ, the expression takes the usual form

i e [Aλgρσ(Wρ∂λW
∗
σ −W ∗

σ∂λWρ) +W ρgσλ(W ∗
σ∂ρAλ −Aλ∂ρW

∗
σ ) +W ∗σgλρ(Aλ∂σWρ −Wρ∂σAλ)], (5.54)

and similarly for the ZW+W− vertex with the coupling e cos θ
W
/ sin θ

W
instead of e. This defines all

tri-linear couplings among gauge bosons.

The term in g2 in the interaction lagrangian density eq. (5.49) is rather boring to expand. Using the

relation ǫijkǫilm = δjlδkm − δjmδkl, it becomes

− e2

4 sin2 θ
W

[Wµ(x) ·Wµ(x)W
ν(x) ·Wν(x)−W

µ(x) ·Wν(x)W
ν(x) ·Wµ(x)]

= − e2

4 sin2 θ
W

[

W µ
i WiρW

ν
j Wjσ

]

[gρµ g
σ
ν − gσµ g

ρ
ν ] (5.55)

with the notation W
µ ·Wν = ΣiW

µ
i Wiν . One obtains the vertex for the physical fields using

W
µ(x) ·Wρ(x) =W µW ∗

ρ +W ∗µWρ + (sin θ
W
Aµ + cos θ

W
Zµ)(sin θ

W
Aρ + cos θ

W
Zρ)], (5.56)

so that eq. (5.55) becomes

− e2

2 sin2 θ
W

[

WµW
∗
ρWσW

∗
ν +WµW

∗
ρ (sin θWAσ+cos θ

W
Zσ)(sin θWAν+cos θ

W
Zν)
]

[gµρ gνσ − gµσ gνρ]
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The antisymmetry of the [gµρ gνσ − gµσ gνρ] tensor combination kills the terms with only photons

and/or Z bosons. The self-couplings of gauge bosons are thus given by

LIG =

−i e [Aλgρσ(Wρ∂λW
∗
σ −W ∗

σ∂λWρ) +W ρgσλ(W ∗
σ∂ρAλ −Aλ∂ρW

∗
σ ) +W ∗σgλρ(Aλ∂σWρ −Wρ∂σAλ)]

+ {Aλ → Zλ, e→ e cos θ
W
/ sin θ

W
} (5.57)

− e2

2 sin2 θ
W

[

WµW
∗
ρWσW

∗
ν +WµW

∗
ρ (sin θWAσ+cos θ

W
Zσ)(sin θWAν+cos θ

W
Zν)
]

[gµρgνσ − gµσgνρ]

In conclusion, from eq. (5.49) one has two three-boson vertices W−W+γ, W−W+Z with derivative

couplings and four four-boson vertices W−W+W−W+, W−W+γγ, W−W+ZZ, W−W+γZ. The ab-

sence of vertices involving only γ’s and/or Z’s has its origin in the fact that they would arise from

the term g2ǫi33W3µ(x)W3ν(x) ǫi33W
ρ
3 (x)W

σ
3 (x), in eq. (5.49), which is of course 0. Using ”standard

methods” one can, from the expressions above, extract the Feynman rules for the couplings between

fermions and gauge bosons. It will not be done here as they can be found in books.

To summarize this rather technical section we count at this point 15 couplings in the model (for one

generation of fermions). One has:

- 9 fermion-fermion-boson vertices: ēeγ, ēeZ, ν̄eνeZ, ν̄eeW
+, ūuγ, ūuZ, d̄dγ, d̄dZ, ūdW+

- 2 trilinear gauge bosons vertices : W+W−γ, W+W−Z

- 4 quadrilinear gauge bosons vertices : W−W+W−W+, W−W+γγ, W−W+ZZ, W−W+γZ.

They depend only on two parameters e and θ
W

(and, of course, the fermion charges). It is obvious

that the symmetry properties of the lagrangien is quite constraining. The important fact is that

the relations between couplings derived above will be preserved by the mechanism of ”spontaneous

symmetry breaking” we are going to discuss. This is an important difference with a mechanism of

explicit symmetry breaking where these relations would have been lost.

5.3 Progress status and problems

Considering what has been achieved until now, one finds that the model based on the SU(2)L⊗U(1)Y

symmetry contains four gauge bosons: two charged ones with (V −A) couplings to fermions and two

neutral ones with couplings such that these bosons can be interpreted as the photon and the Z boson.

The “only” difference with the real world is that in the present state of development of the model

the gauge bosons are massless, because of the assumed exact gauge invariance and the fermions are

also massless because of the left-right asymmetry of the gauge group. Counting the bosonic degrees
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of freedom of the model one realizes that three degrees of freedom are “missing”, associated to the

longitudinal polarisation states of the heavy vector bosons as summarised in the table.

Model Real World
degrees of freedom degrees of freedom

transverse longitudinal
W− 2 0
W+ 2 0
Z 2 0
γ 2 0

transverse longitudinal
W− 2 1
W+ 2 1
Z 2 1
γ 2 0

In order to complete the model one should therefore introduce at least three new fields in the la-

grangian. This will be done through a multiplet of scalar fields and it will be seen that, by the

mechanism of spontaneous symmetry breaking of local gauge invariance, some of the scalar fields

become the longitudinal polarisation states and correlatively the vector bosons acquire a mass.
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