7 Spontaneous local U(1) symmetry breaking

We impose now that the lagrangian density eq. (6.2) is invariant under the local phase change
o(z) — €9@,(z). For this purpose we introduce a vector field B, (r) and a covariant derivative
D, = 0, —igB,(z) such that D,¢(x) = iga(x)D,p(x) under an infinitesimal phase change. This is
realised if B, (z) transforms as B,(x) — By(x) + gOua(x). Since D,¢*(x) — —iga(x)D,p*(x) the
locally invariant version of the scalar field lagrangian density is

* * * 1 v
Ls+ L= Dup*Dyp+ "o — h(p*p)* — O (7.1)

where we have also included the kinetic term, see eq. (5.21), of the gauge boson B, (x). As in the study
of the breaking of the global symmetry we choose as the lowest energy state ¢y = v/v/2, (eq. (6.5),

and we expand the field around this vacuum expectation value as in eq. (6.6).

7.1 Unitary gauge

We take advantage of the freedom of choice of the gauge to find a function a(x) such that elge(®)
applied to eq. (6.6) gives

1
p(r) = %(U + H(z)), (7.2)

i.e. we absorb the imaginary part in a change of phase and we are left with one real field H(z). This

choice defines the unitary gauge. Applying the covariant derivative on ¢(x) one obtains
Do) = —=0,H(x) — igBy(x)—= (v + H(x)) (73)
r) = —= x)—1 x)—(v x .
P NG 9B /2
Injecting this in the lagrangian density, taking the potential part from eq. (6.7) with o1 = H, p9 =0,

and reshuffling the terms we find

1 2 2 772 1 v g°v?
Ls+ Lg= 5(8,&[(95)) — hv°H (x)] + [—ZICW(JU)IC“ (x) + TBu(x)B”(w)
2
+ ¢*vH (x)B,(z)B"(x) + %Hz(:E)BH(a:)B“(x) — hwH?(x) — gH‘l(:n). (7.4)

The terms in the first line are those from which we build the propagators of the H and B, fields
respectively, while the second line contains the couplings between the fields. Applying the Euler-
Lagrange equation (4.1) we obtain for the H field (9,0" = )

(-0 - 2m?*)H(z) = 3hvH?(z) + hH*(x) — g*vB,(2) B*(x) — g*H(z) B, () B"(x), (7.5)
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and for the gauge boson
Bguw — 0,0, + (gv)z)B”(x) = —92H2(w)BM(ac) — ngvHBu(x). (7.6)
To get the free propagators one solves the Green’s functions
(-O0-2m?) Gla—y) = W (z—y)
(O9up — 0up + (90)%gpp) G (w —y) = ighdW(x —y), (7.7)

in Fourier space. For the scalar field one parameterises G(z —y) = [(d*k/(2m)*) exp(—ik(z —y))G (k)
and one easily get the H field propagator

1

G = = M2 + e

with M, =vv2h, (7.8)

with the ie prescription required by causality. Similarly, for the gauge field we write G*(x — y) =
[(d*k/(2m)*) exp(—ik(z — y))GH (k) to get

(_k2gup + kukp + (9”)29up)GW(k‘) = igZ. (7.9)

We look for the solution under the form G*”(k) = ag” + bkPk" which is the most general rank 2

tensor which can be constructed from a vector k*. One obtains finally

—1
k2 — M2 +ie

Kk

Gu(k) = (9w — W) with M, = gv. (7.10)
B

The mass of the scalar H field is M, = V2hv and the mass of the gauge field M 5 = gv : both are
proportional to the vacuum expectation value of the scalar field but the latter is proportional to the
gauge coupling while the former depends on the quartic coupling in the potential. The term giving
rise to the gauge boson mass originates from the covariant derivative acting on ¢(x) after symmetry

breaking while the mass of the H field comes from the potential V().

¢ Remark on the polarisation of a massive vector boson
The propagator of B, (x) is that of a massive scalar field which has three states of polarisation. Indeed

one can easily verify, from eq. (2.25), that the numerator of eq. (7.10) is

- (o0 - 22 ) = Z b 0, (.11)
B %

the trace of which is -3.
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Counting the degrees of freedom in the model we have after symmetry breaking one real scalar field
H(z) and the three polarisation states of the gauge boson while before symmetry breaking one had
two scalar fields ¢ (), p2(z) and the two polarisation states of the massless gauge boson : it appears
that the massless Golstone boson ¢ (x) has become the longitudinal polarisation of B, (x). The gauge
used in this derivation is called the unitary gauge. With this choice the vector boson propagator may
lead, as we have seen, to divergences when calculationg Feynman diagrams because of the k,k, / mQB

term and therefore may ruin the renormalisability of the model.

7.2 Renormalisable gauges : 't Hooft R; gauges

To study this is more detail we go back to the lagrangiann density eq. (7.1) with the general form,

eq. (6.6), of the scalar field after symmetry breaking. The covariant derivative is then

Dyd(z) = @f4¢mwk%w+muwm@@»
&?@%@%HBA@@QH+§§

The lagrangian density takes then the form, keeping explicitely only the terms quadratic in the fields,

[0ud2(x) = gBu(x)(v + ¢1(2))] (7.12)

1 2 9. 1 v g*v?
Ls+Lg= [§(au¢1 (x))* — hv (bl(x)] + [—ZICW(JJ)IC“ () + TBu(x)B“(a;)
+ |50 - 0B (010" 02(0)| + Lo (7.13)

The first line is identical to that of eq. (7.4) with a massive scalar field ¢1(z) (¢1(z) = H(z) is the
Higgs field) and a massive gauge boson. In the second line one has the massless ¢o(x) scalar (the

Goldstone boson) coupling to the gauge field. The function Ly,

N g° h
Ling = (020, 01)B* + g°ve1 B, B" + 7(90? + ¢3)BuB" — hvpy (91 + ¢3) — 1(90? +¢3)%  (7.14)

contains the couplings between ¢1, ¢ and B,,.

Clearly ¢o(z) is not independent on B, (x) since it oscillates into the gauge boson with a derivative
coupling as can be seen from eq. (7.13). In fact if we consider the polarisation tensor of the B, field,

treating both the mass term and the B,,0" ¢, as vertices we find (gv = Mp)

AVAVAVAV: " AVAVAVAV = AVAVAVA' _VAVAVAVEREEES SEERAVAVAVAVAY i e AVAVAVAVAV
Z.M,%g,u,r/ _MB k,u MBk,,,
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k2
which is transverse as it should be. From eq. (2.25) one sees that the tensor structure is equivalent

iM2 g+ (=M k) 5 Mk = iM2 (g™ — ) (7.15)
to summing over transverse and longitudinal polarisations of B,: this shows that ¢2(z) builds up the
longitudinal polarisation of the originally transverse B, (z) field. One may suspect that iterating the
self-energy bubble on the B, field propagator will reconstruct the propagator of a massive field. This

is disccussed more precisely below.

We follow here a procedure familiar from QED. To quantise QED, it is necessary to break the gauge
invariance and this is done by adding to the lagrangian a “gauge fixing” term. Here the gauge fixing
term is chosen to be

—2—16(@3“(:@ + € gv (). (7.16)

This choice (instead of the traditional term —(8,B"(z))?/2¢ of QED) is made to eliminate the mixed

Laor =

term guB,,(x)0"¢2(x) in the lagrangian. This class of gauge conditions is known under the name of
't Hooft’s gauges or R¢ gauges where ¢ is an arbitrary real number. One considers the new lagrangian

density Lg + Lo + Lo which then becomes

Ls+Lg+ Lar = [%(%%(@)2 - hv2¢?(:ﬂ)} + % [(Du2(2))* — £(gv)* 3 (2)]
+ [—llc Kro4 MB (x)B”(a;)} + i(a B"(2))? + L (7.17)
4 2 K 26 M e '

By the specific choice of the gauge condition the mixed term in B,0"¢2 in Lg + Lg combines with
the term ¢20" B,, in LgF to give a total derivative which can be safely ignored in perturbation theory.
However the Goldstone boson acquires a mass from the gauge fixing lagrangian density. Following the
procedure used when working in the unitary gauge one derives the Green’s equation for the fields ¢;
and B,,, the solution of which gives the free propagators. Thus one obtains
(-0 —2m*)Gy,(x —y) = 6V (x—vy)
(-0 —&(gv)*)Goy(x —y) = W (z—y)
1 .

(Ogpw — (1 — E)auay +(gv)2g9u)G (x —y) = ighd™W(z —y). (7.18)

For the scalar fields we obtain easily

for the field ¢; = H G, (k)= with M, =vv2h (7.19)

for the Goldstone field ¢ Gy, (k) = with M, = gv|. (7.20)




For the gauge fields, introducing G*?(z — y) = [(d*k/(2m)*) exp(—ik(z — y))G*? (k) one has to solve

1 .
E)kukv - MﬁguV)GVp(k‘) = —igy, (7.21)

One looks for the solution in the form of a¥? + bk kPand one finds

(kzgur/ - (1-

) k,k
Gup(k‘) = _m <gup - (1- f)m) . (7.22)

One observes that for any value of £ finite all propagators have the right asymptotic behavior i.e. they
behave like 1/k2, k? — oo which is a necessary condition for the model to be renormalisable. However
both the Goldstone and the gauge boson propagators have a spurious pole at k? — §m2B which should
cancel when calculating a physical process. It is interesting to compare the gauge boson propagator
in the general 't Hooft gauge with its form in the unitary gauge. One proves easily
i kyk i kyk i kyk
EE T (e 9 e ) = e (e i) e 0
— Mg +e 3 B — My +e B B o B

One recognises on the right-hand side the propagator in the unitary gauge, eq. (7.10), plus a term
which has the the same pole structure as the Goldstone boson. An exemple will be given later, on

how such a cancellation occurs between this extra piece and the Goldstone contribution.

Special choices of £ can be made:

- ¢ =0 (Landau gauge) : the Golstone boson is massless and the gauge boson propagator is transverse
i.e. k"G, = 0;

- & =1 (Feynman gauge) : the Golstone boson has the same mass as the gauge boson but one looses
the transversity property of the gauge boson propagator;

- & = oo : the Goldstone boson does not propagate and one keeps only the physical degrees of freedom

in the model: one recovers the unitary gauge already considered.

7.3 Fermion masses

We now include a fermion in our toy model. We assume one massless fermion ¢(x) and impose a local
U(1) gauge invariance only on the left-handed component of 1 (z) : 0¢r(z) = iga(z)r(x), 0Yr(z) =
0. The fermion part of the lagrangian density takes the form

Lp=YLiPyr + briPvr, (7.24)

with the covariant derivative acting on v (z) defined by
Dy = (9 —igB)dr. (7.25)
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We parameterise the U(1) invariant interaction between the scalar field and the fermion by the Yukawa

type lagrangian density

Ly = =Xf(Yrdvr + Yrod*vr). (7.26)
After symmetry breaking, using the parameterisation eq. (6.6) of the scalar field, only Ly is affected
)\f - — . )‘f — —
Ly = ——=@w+H + — = —
y \/E(U YL +YRipL) — i \/§¢2(¢L7/)R YrYL)
Afv - A - A _
=~y - ZLHYY — i=Loain (7.27)

V2 V2 V2

where we have recombined the left-handed and right-handed fields. Regrouping all fermion terms we

have
- A - A - A -
Lr+ Ly = 09 = 500+ GUBO =) = TLHY — i =L, (7.28)

We read off the fermion mass

Afv
el (7.29)

myg =

and the couplings of the fermion

- to the gauge field : —i(g/2)v,(1 —7°) ;

- to the Higgs field : i\;/v/2) ;

- to the Goldstone boson : (Af/v/2)7°.

The coupling of the Higgs to the fermion can be written in terms of ”physical parameters”, masses

and the gauge coupling, and one finds

coupling Higgs-fermion-fermion : i\s/ V2) =ig ]\n;—j;, (7.30)

which illustrates an important feature of spontaneous symmetry breaking, namely that the coupling
is proportional to the fermion mass.
In the unitary gauge, the Higgs and gauge boson couplings to the fermion are as above, while the

Goldstone boson ¢ is absorbed by the gauge choice and does not couple to the fermion.

7.4 Gauge invariance at the Born level: an exemple
Putting everything together, the lagrangien density of our model in a general R gauge is
Ls+ Lo+ Lor+Lr+ Ly (7.31)

with Lg + L + Lgr from eq. (7.17) and Lp + Ly from eq. (7.28). We are now in a position to
calculate the scattering amplitude for the collision %1 4+ 19 — 13+ 4. The diagrams to be considered

are
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gauge boson Goldstone boson Higgs boson

The point is to check that the first two diagrams lead to a gauge independent contribution since the
Higgs exchange diagram is independent of the gauge choice . Using the decomposition eq. (7.23) of
the gauge boson propagator in the general 't Hooft gauge it is enough to prove that the rightmost
term in eq. (7.23) is cancelled by the Goldstone exchange diagram. From the gauge boson exchange
we have

2 ‘ ket kv
- ng?qu(l - 75)7/}1(_2) M%(kg — SM%;)

Using Dirac equation this term can be considerably simplified. For instance with k* = p{' — pf

Dayy (1 =)o (7.32)

7/;3’Yu(1 - ’stlku = Y3(p — #3)U1 + 7/;375]511/11 + @3]5375%
= 2my gy, (7.33)

where to obtain the last line we have used Dirac equation p;1); = m i and P3Py =m f¥3. The same

trick can be used at the other vertex to obtain

Payu(1 =)okt = Pu(By — Bo)tba — YaByy P2 — Pu” Potbo
This shows that after symmetry breaking the axial current QZVM75¢ is not conserved since, when

contracted with the gauge field momentum, it gives a term proportional to the mass of the fermion.

Thus eq. (7.32) reduces to

2,2 .
- n;f 3 - 5037 194y o (7.35)
Mg k? — Mg
The contribution of the Goldstone boson exchange is simply
e 1 G357 0100y P2 (7.36)
2 k2 — EM3

Using the relation gzm% / M?B = )\% /2, eq. (7.30), one easily verifies the compensation of the { depen-
dant part of the gauge propagator by the Goldstone boson. Needless to say that, for this to occur, the
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mass term of the gauge boson and that of the fermion should have the same origin and be both related
to the vacuum expectation value v. The gauge invariance can be checked on other processes notably
those involving the triple gauge couplings, however the discussion is more tricky since it implies the

coupling of the Goldstone field to the vector boson as given in (7.14).
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