
7 Spontaneous local U(1) symmetry breaking

We impose now that the lagrangian density eq. (6.2) is invariant under the local phase change

ϕ(x) → eigα(x)ϕ(x). For this purpose we introduce a vector field Bµ(x) and a covariant derivative

Dµ = ∂µ − igBµ(x) such that Dµϕ(x) → igα(x)Dµϕ(x) under an infinitesimal phase change. This is

realised if Bµ(x) transforms as Bµ(x) → Bµ(x) + g∂µα(x). Since Dµϕ
∗(x) → −igα(x)Dµϕ

∗(x) the

locally invariant version of the scalar field lagrangian density is

LS + LG = Dµϕ
∗Dµϕ+ µ2ϕ∗ϕ− h(ϕ∗ϕ)2 − 1

4
KµνKµν (7.1)

where we have also included the kinetic term, see eq. (5.21), of the gauge boson Bµ(x). As in the study

of the breaking of the global symmetry we choose as the lowest energy state ϕ0 = v/
√
2, (eq. (6.5),

and we expand the field around this vacuum expectation value as in eq. (6.6).

7.1 Unitary gauge

We take advantage of the freedom of choice of the gauge to find a function α(x) such that eigα(x)

applied to eq. (6.6) gives

ϕ(x) =
1√
2
(v +H(x)), (7.2)

i.e. we absorb the imaginary part in a change of phase and we are left with one real field H(x). This

choice defines the unitary gauge. Applying the covariant derivative on ϕ(x) one obtains

Dµϕ(x) =
1√
2
∂µH(x)− igBµ(x)

1√
2
(v +H(x)) (7.3)

Injecting this in the lagrangian density, taking the potential part from eq. (6.7) with ϕ1 = H, ϕ2 = 0,

and reshuffling the terms we find

LS + LG =

[

1

2
(∂µH(x))2 − hv2H2(x)

]

+

[

−1

4
Kµν(x)Kµν(x) +

g2v2

2
Bµ(x)B

µ(x)

]

+ g2vH(x)Bµ(x)B
µ(x) +

g2

2
H2(x)Bµ(x)B

µ(x)− hvH3(x)− h

4
H4(x). (7.4)

The terms in the first line are those from which we build the propagators of the H and Bµ fields

respectively, while the second line contains the couplings between the fields. Applying the Euler-

Lagrange equation (4.1) we obtain for the H field (∂µ∂
µ = �)

(−�− 2hv2)H(x) = 3hvH2(x) + hH3(x)− g2vBµ(x)B
µ(x)− g2H(x)Bµ(x)B

µ(x), (7.5)
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and for the gauge boson

(�gµν − ∂µ∂ν + (gv)2)Bν(x) = −g2H2(x)Bµ(x)− 2g2vHBµ(x). (7.6)

To get the free propagators one solves the Green’s functions

(−�− 2hv2) G(x− y) = iδ(4)(x− y)

(�gµρ − ∂µ∂ρ + (gv)2gµρ) G
ρν(x− y) = igνµδ

(4)(x− y), (7.7)

in Fourier space. For the scalar field one parameterises G(x− y) =
∫

(d4k/(2π)4) exp(−ik(x− y))G(k)
and one easily get the H field propagator

G(k) =
i

k2 −M2
H
+ iǫ

with M
H
= v
√
2h, (7.8)

with the iǫ prescription required by causality. Similarly, for the gauge field we write Gµν(x − y) =
∫

(d4k/(2π)4) exp(−ik(x − y))Gµν(k) to get

(−k2gµρ + kµkρ + (gv)2gµρ)G
ρν(k) = igνµ. (7.9)

We look for the solution under the form Gρν(k) = agρν + bkρkν which is the most general rank 2

tensor which can be constructed from a vector kµ. One obtains finally

Gµν(k) =
−i

k2 −M2
B
+ iǫ

(gµν −
kµkν
M2

B

) with M
B
= gv. (7.10)

The mass of the scalar H field is M
H

=
√
2hv and the mass of the gauge field M

B
= gv : both are

proportional to the vacuum expectation value of the scalar field but the latter is proportional to the

gauge coupling while the former depends on the quartic coupling in the potential. The term giving

rise to the gauge boson mass originates from the covariant derivative acting on ϕ(x) after symmetry

breaking while the mass of the H field comes from the potential V (ϕ).

• Remark on the polarisation of a massive vector boson

The propagator of Bµ(x) is that of a massive scalar field which has three states of polarisation. Indeed

one can easily verify, from eq. (2.25), that the numerator of eq. (7.10) is

−
(

gµν −
kµkν
M2

B

)

=
∑

i

ε(i)µ (k) ε(i)ν (k), (7.11)

the trace of which is -3.
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Counting the degrees of freedom in the model we have after symmetry breaking one real scalar field

H(x) and the three polarisation states of the gauge boson while before symmetry breaking one had

two scalar fields ϕ1(x), ϕ2(x) and the two polarisation states of the massless gauge boson : it appears

that the massless Golstone boson ϕ2(x) has become the longitudinal polarisation of Bµ(x). The gauge

used in this derivation is called the unitary gauge. With this choice the vector boson propagator may

lead, as we have seen, to divergences when calculationg Feynman diagrams because of the kµkν/m
2
B

term and therefore may ruin the renormalisability of the model.

7.2 Renormalisable gauges : ’t Hooft Rξ gauges

To study this is more detail we go back to the lagrangiann density eq. (7.1) with the general form,

eq. (6.6), of the scalar field after symmetry breaking. The covariant derivative is then

Dµφ(x) = (∂µ − igBµ(x))
1√
2
(v + φ1(x) + iφ2(x))

=
1√
2
[∂µφ1(x) + gBµ(x)φ2(x)] +

i√
2
[∂µφ2(x)− gBµ(x)(v + φ1(x))] (7.12)

The lagrangian density takes then the form, keeping explicitely only the terms quadratic in the fields,

LS + LG =

[

1

2
(∂µφ1(x))

2 − hv2φ21(x)
]

+

[

−1

4
Kµν(x)Kµν(x) +

g2v2

2
Bµ(x)B

µ(x)

]

+

[

1

2
(∂µφ2(x))

2 − gvBµ(x)∂
µφ2(x)

]

+ Lint. (7.13)

The first line is identical to that of eq. (7.4) with a massive scalar field φ1(x) (φ1(x) = H(x) is the

Higgs field) and a massive gauge boson. In the second line one has the massless φ2(x) scalar (the

Goldstone boson) coupling to the gauge field. The function Lint,

Lint = g(ϕ2
←→
∂µϕ1)B

µ + g2vϕ1BµB
µ +

g2

2
(ϕ2

1 + ϕ2
2)BµB

µ − hvϕ1(ϕ
2
1 + ϕ2

2)−
h

4
(ϕ2

1 + ϕ2
2)

2, (7.14)

contains the couplings between φ1, φ2 and Bµ.

Clearly φ2(x) is not independent on Bµ(x) since it oscillates into the gauge boson with a derivative

coupling as can be seen from eq. (7.13). In fact if we consider the polarisation tensor of the Bµ field,

treating both the mass term and the Bµ∂
µφ2 as vertices we find (gv =MB)

= +

iM2
Bgµν −MBkµ MBkν
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iM2
B
gµν + (−M

B
kµ)

i

k2
M

B
kν = iM2

B
(gµν − kµkν

k2
) (7.15)

which is transverse as it should be. From eq. (2.25) one sees that the tensor structure is equivalent

to summing over transverse and longitudinal polarisations of Bµ: this shows that φ2(x) builds up the

longitudinal polarisation of the originally transverse Bµ(x) field. One may suspect that iterating the

self-energy bubble on the Bµ field propagator will reconstruct the propagator of a massive field. This

is disccussed more precisely below.

We follow here a procedure familiar from QED. To quantise QED, it is necessary to break the gauge

invariance and this is done by adding to the lagrangian a “gauge fixing” term. Here the gauge fixing

term is chosen to be

LGF = − 1

2ξ
(∂µB

µ(x) + ξ gv φ2(x))
2. (7.16)

This choice (instead of the traditional term −(∂µBµ(x))2/2ξ of QED) is made to eliminate the mixed

term gvBµ(x)∂
µφ2(x) in the lagrangian. This class of gauge conditions is known under the name of

’t Hooft’s gauges or Rξ gauges where ξ is an arbitrary real number. One considers the new lagrangian

density LS + LG + LGF which then becomes

LS + LG + LGF =

[

1

2
(∂µφ1(x))

2 − hv2φ21(x)
]

+
1

2

[

(∂µφ2(x))
2 − ξ(gv)2φ22(x)

]

+

[

−1

4
KµνKµν +

(gv)2

2
Bµ(x)B

µ(x)

]

+
1

2ξ
(∂µB

µ(x))2 + Lint (7.17)

By the specific choice of the gauge condition the mixed term in Bµ∂
µφ2 in LS + LG combines with

the term φ2∂
µBµ in LGF to give a total derivative which can be safely ignored in perturbation theory.

However the Goldstone boson acquires a mass from the gauge fixing lagrangian density. Following the

procedure used when working in the unitary gauge one derives the Green’s equation for the fields φi

and Bµ, the solution of which gives the free propagators. Thus one obtains

(−�− 2hv2)Gφ1
(x− y) = iδ(4)(x− y)

(−�− ξ(gv)2)Gφ2
(x− y) = iδ(4)(x− y)

(�gµν − (1− 1

ξ
)∂µ∂ν + (gv)2gµν)G

νρ(x− y) = igρµδ
(4)(x− y). (7.18)

For the scalar fields we obtain easily

for the field φ1 = H G
H
(k) =

i

k2 −M2
H
+ iǫ

with M
H
= v
√
2h (7.19)

for the Goldstone field φ2 Gφ2
(k) =

−i
k2 − ξM2

B
+ iǫ

with M
B
= gv . (7.20)
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For the gauge fields, introducing Gνρ(x− y) =
∫

(d4k/(2π)4) exp(−ik(x − y))Gνρ(k) one has to solve

(k2gµν − (1− 1

ξ
)kµkν −M2

B
gµν)G

νρ(k) = −igρµ (7.21)

One looks for the solution in the form of aνρ + bkνkρand one finds

Gνρ(k) = −
i

k2 −M2
B
+ iǫ

(

gνρ − (1− ξ) kνkρ
k2 − ξM2

B

)

. (7.22)

One observes that for any value of ξ finite all propagators have the right asymptotic behavior i.e. they

behave like 1/k2, k2 →∞ which is a necessary condition for the model to be renormalisable. However

both the Goldstone and the gauge boson propagators have a spurious pole at k2 − ξm2
B which should

cancel when calculating a physical process. It is interesting to compare the gauge boson propagator

in the general ’t Hooft gauge with its form in the unitary gauge. One proves easily

− i

k2 −M2
B
+ iǫ

(

gνρ − (1− ξ) kνkρ
k2 − ξM2

B

)

= − i

k2 −M2
B
+ iǫ

(

gνρ −
kνkρ
M2

B

)

− i

M2
B

kνkρ
k2 − ξM2

B

(7.23)

One recognises on the right-hand side the propagator in the unitary gauge, eq. (7.10), plus a term

which has the the same pole structure as the Goldstone boson. An exemple will be given later, on

how such a cancellation occurs between this extra piece and the Goldstone contribution.

Special choices of ξ can be made:

- ξ = 0 (Landau gauge) : the Golstone boson is massless and the gauge boson propagator is transverse

i.e. kνGνρ = 0;

- ξ = 1 (Feynman gauge) : the Golstone boson has the same mass as the gauge boson but one looses

the transversity property of the gauge boson propagator;

- ξ →∞ : the Goldstone boson does not propagate and one keeps only the physical degrees of freedom

in the model: one recovers the unitary gauge already considered.

7.3 Fermion masses

We now include a fermion in our toy model. We assume one massless fermion ψ(x) and impose a local

U(1) gauge invariance only on the left-handed component of ψ(x) : δψL(x) = igα(x)ψL(x), δψR(x) =

0. The fermion part of the lagrangian density takes the form

LF = ψ̄Li6DψL + ψ̄Ri6∂ψR, (7.24)

with the covariant derivative acting on ψL(x) defined by

6DψL = (6∂ − ig 6B)ψL. (7.25)
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We parameterise the U(1) invariant interaction between the scalar field and the fermion by the Yukawa

type lagrangian density

LY = −λf (ψ̄LφψR + ψ̄Rφ
∗ψL). (7.26)

After symmetry breaking, using the parameterisation eq. (6.6) of the scalar field, only LY is affected

LY = − λf√
2
(v +H)(ψ̄LψR + ψ̄RψL)− i

λf√
2
φ2(ψ̄LψR − ψ̄RψL)

= −λfv√
2
ψ̄ψ − λf√

2
Hψ̄ψ − i λf√

2
φ2ψ̄γ

5ψ, (7.27)

where we have recombined the left-handed and right-handed fields. Regrouping all fermion terms we

have

LF + LY = ψ̄(i6∂ − λfv√
2
)ψ +

g

2
ψ̄ 6B(1− γ5)ψ − λf√

2
Hψ̄ψ − i λf√

2
φ2ψ̄γ

5ψ. (7.28)

We read off the fermion mass

mf =
λfv√
2

(7.29)

and the couplings of the fermion

- to the gauge field : −i(g/2)γµ(1− γ5) ;
- to the Higgs field : iλf/

√
2) ;

- to the Goldstone boson : (λf/
√
2)γ5.

The coupling of the Higgs to the fermion can be written in terms of ”physical parameters”, masses

and the gauge coupling, and one finds

coupling Higgs-fermion-fermion : iλf/
√
2) = i g

mf

MB
, (7.30)

which illustrates an important feature of spontaneous symmetry breaking, namely that the coupling

is proportional to the fermion mass.

In the unitary gauge, the Higgs and gauge boson couplings to the fermion are as above, while the

Goldstone boson φ2 is absorbed by the gauge choice and does not couple to the fermion.

7.4 Gauge invariance at the Born level: an exemple

Putting everything together, the lagrangien density of our model in a general Rξ gauge is

LS + LG + LGF + LF + LY (7.31)

with LS + LG + LGF from eq. (7.17) and LF + LY from eq. (7.28). We are now in a position to

calculate the scattering amplitude for the collision ψ1+ψ2 → ψ3+ψ4. The diagrams to be considered

are
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1 2

3 4

1 2 1 2

3 4 3 4

gauge boson Goldstone boson Higgs boson

The point is to check that the first two diagrams lead to a gauge independent contribution since the

Higgs exchange diagram is independent of the gauge choice ξ. Using the decomposition eq. (7.23) of

the gauge boson propagator in the general ’t Hooft gauge it is enough to prove that the rightmost

term in eq. (7.23) is cancelled by the Goldstone exchange diagram. From the gauge boson exchange

we have

− g2

4
ψ̄3γµ(1− γ5)ψ1(−i)

kµkν

M2
B(k

2 − ξM2
B)
ψ̄4γν(1− γ5)ψ2. (7.32)

Using Dirac equation this term can be considerably simplified. For instance with kµ = pµ1 − p
µ
3

ψ̄3γµ(1− γ5)ψ1k
µ = ψ̄3(6p1 − 6p3)ψ1 + ψ̄3γ

5 6p1ψ1 + ψ̄3 6p3γ5ψ1

= 2mf ψ̄3γ
5ψ1, (7.33)

where to obtain the last line we have used Dirac equation 6p1ψ1 = mfψ1 and ψ̄3 6p3 = mfψ3. The same

trick can be used at the other vertex to obtain

ψ̄4γµ(1− γ5)ψ2k
µ = ψ̄4(6p4 − 6p2)ψ2 − ψ̄4 6p4γ5ψ2 − ψ̄4γ

5 6p2ψ2

= −2mf ψ̄4γ
5ψ2. (7.34)

This shows that after symmetry breaking the axial current ψ̄γµγ5ψ is not conserved since, when

contracted with the gauge field momentum, it gives a term proportional to the mass of the fermion.

Thus eq. (7.32) reduces to

−
g2m2

f

M2
B

i

k2 − ξM2
B

ψ̄3γ
5ψ1ψ̄4γ

5ψ2 (7.35)

The contribution of the Goldstone boson exchange is simply

λ2F
2

i

k2 − ξM2
B

ψ̄3γ
5ψ1ψ̄4γ

5ψ2 (7.36)

Using the relation g2m2
f/M

2
B = λ2F/2, eq. (7.30), one easily verifies the compensation of the ξ depen-

dant part of the gauge propagator by the Goldstone boson. Needless to say that, for this to occur, the
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mass term of the gauge boson and that of the fermion should have the same origin and be both related

to the vacuum expectation value v. The gauge invariance can be checked on other processes notably

those involving the triple gauge couplings, however the discussion is more tricky since it implies the

coupling of the Goldstone field to the vector boson as given in (7.14).
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