
8 The broken SU(2)L ⊗U(1)Y symmetry

In this case, the generators of the symmetry group will be T J = (τ1, τ2, τ3, Y ), i.e. the generators of

the weak isospin group and of the U(1)Y hypercharge gauge group. We introduce a complex scalar

field Φ(x), which is a doublet of SU(2) (I
Φ
= 1

2),

Φ =
1√
2

(

ϕ
1
− i ϕ

2

ϕ
3
− i ϕ

4

)

(8.1)

and the standard scalar lagrangian

LS = ∂µΦ
†∂µΦ− V (Φ), V (Φ) = −µ2Φ†Φ + h (Φ†Φ)2. (8.2)

which is invariant under the rigid transformation

Φ → Φ′ = eiτ ·α/2 eiyΦβ/2 Φ. (8.3)

The minimum of the potential is obtained for (see eq. (6.4))

Φ†Φ = |Φ|2 = µ2

2h
=

v2

2
. (8.4)

There is an infinite number of vacua states : all states with the norm v/
√
2 obtained by a gauge

transformation. We choose the physical vacuum to be

Φ0 =

(

0
v√
2

)

with v =
µ√
h
. (8.5)

Since we require the electric charge to be conserved after symmetry breaking, following the reasoning

in sec. 6.2, we have to enforce that the charge generator acting on the vacuum state should vanish.

Using the Gell-Mann/Nishijima relation eq. (4.28) the charge operator acting on Φ0 is

Q Φ0 = (I3 +
Y

2
) Φ0 =

1

2
(τ3 + Y ) Φ0 =

(

1
2 +

y
Φ

2 0

0 −1
2 +

y
Φ

2

)

(

0
v√
2

)

= 0 (8.6)

implying that the hypercharge of the scalar field must be y
Φ
= 1 to ensure charge conservation in the

broken theory: the charge of the classical vacuum is 0. As in the abelian case, we can study the system

around the classical minimum and expand the scalar field around its vacuum expectation value

Φ =

(

1√
2
(ω

1
(x)− iω

2
(x))

1√
2
(v + ω

0
(x)− iω

3
(x))

)

=

(

ω∗(x)
1√
2
(v + ω

0
(x)− iω

3
(x))

)

. (8.7)
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The complex field ω∗ has a positive electric charge while ω0 and ω3 are neutral. In terms of the new

variables the scalar potential V (Φ) becomes

V (Φ) = hv2ω2
0

+ hv ω
0
(ω2

0
+ ω

2) +
h

4
(ω2

0
+ ω

2)2 (8.8)

showing that the triplet ω of ωi fields is massless while the neutral ω
0
field acquires a mass

Mω
0
=

√
2hv2. (8.9)

All these fields are coupled together with a strength which can be read off the equation above.

Thus, in our model, in agreement with Noether theorem, three degrees of freedom are broken leading

to three massless Goldstone bosons, and the vacuum is still left invariant under the combination

Q = I3 + Y/2. There is still an abelian symmetry left, namely the U(1)emg group.

8.1 Local symmetry breaking and the Brout-Englert-Higgs mechanism

Armed with this lengthy preliminaries we now turn to spontaneous breaking of the local gauge sym-

metry SU(2)L ⊗ U(1)Y down to U(1)emg in the framework of the Standard Model. Let us state the

results before diving into an ocean of technicalities. The case of a global symmetry has just been

analysed and led to the appearance of three massless (Goldstone) bosons and a massive one. When

the symmetry is made local these massless bosons turn out to be unphysical (two charged ones, ω and

ω∗, and a neutral one ω3), in the sense that they can be gotten rid off by a gauge transformation, but

instead, three gauge bosons (a neutral one and the two charged ones) become massive and therefore

acquire longitudinal polarisation states which are the Goldstone modes in disguise.

To implement the breaking of the local SU(2)L ⊗ U(1)Y symmetry we first have to extend the

electroweak lagrangian eq. (5.22) to include the scalar field contribution LS eq. (8.2) in its locally

gauge invariant form (see eq. (8.12) below) as well as the interaction of the scalar field with the

fermions LY (where Y stands for Yukawa; see eq. (8.26) below) so that the complete electroweak

lagrangian density is

L = LF + LG + LS + LY . (8.10)

In the following we work in the unitary gauge.

8.2 The Higgs and gauge bosons sector : masses and couplings

We concentrate for the moment on LS which drives the spontaneous breaking of the local electroweak

symmetry. Only neutral scalar fields can acquire a vacuum expectation value : other fields, such
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as fermions or gauge bosons, cannot do so otherwise the physical vacuum would have some angular

momentum or other non-vanishing quantum numbers. We impose now the invariance of LS under a

change of the local phases

Φ(x) → Φ′(x) = eigα(x)·τ/2 eig
′y

Φ
β(x)/2 Φ(x). (8.11)

To keep gauge invariance requires substituting the covariant derivative to the partial derivative in LS

which then takes the form

LS = DµΦ
†DµΦ− µ2Φ†Φ+ h(Φ†Φ)2 (8.12)

with the definition, eq. (5.20),

Dµ = ∂µ − i g
τ

2
·Wµ − i

1

2
g′ Bµ (8.13)

and the choice, eq. (8.6), y
Φ
= 1 for the hypercharge. This can be easily checked using the same line

of reasoning as used in sec. 5.

To study the system around the classical vacuum we parameterise the scalar field as in eq. (8.7).

However we note that by an appropriate gauge transformation we can find α(x), β(x) such that :

eig
′y

Φ
β(x)/2 eigτ ·α(x)/2 Φ(x) =

(

0
v+H(x)√

2

)

, (8.14)

showing that the fields ωi(x) can be removed from the lagrangian altogether and therefore are not

physical. Of course, explicit gauge invariance of the vacuum state will be lost since a particular gauge

has been chosen. To analyse the effects of symmetry breaking we work with the “physical” Aµ and Zµ

fields of eq. (5.31) rather than with W3µ and Bµ. For this purpose we use the expression eq. (5.43)

for the covariant derivative which, applied to the form eq. (8.14) of Φ (with e1 = 1, e2 = 0), yields

Dµ

(

0
v+H(x)√

2

)

=

[

∂µ − i
e√

2 sin θ
W

(

0 W ∗
µ

Wµ 0

)

− ie

(

Aµ 0
0 0

)

−i
e

sin θ
W
cos θ

W

(

1
2 − sin2 θ

W
Zµ 0

0 −1
2Zµ

)]

(

0
v+H(x)√

2

)

=

( −i e
2 sin θ

W

W ∗
µ(v +H(x))

∂µ
H(x)√

2
+ i e

2
√
2 sin θ

W
cos θ

W

Zµ(v +H(x))

)

(8.15)

It is then trivial to get DµΦ
†DµΦ and write the scalar lagrangian density LS

LS =
1

2
(∂µH(x))2 +

e2

4 sin2 θ
W

(v +H(x))2W ∗
µW

µ +
e2

8 sin2 θ
W
cos2 θ

W

(v +H(x))2ZµZ
µ

− hv2H2 − hv H3 − h

4
H4 (8.16)
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In the last line we have used eq. (8.8) for the scalar potential dropping of course the spurious ω(x)

fields which have been gauged away. The above equation contains a lot of information since it gives

masses to the gauge and the Higgs fields as well as defines the couplings between them.

• Masses

Combining the terms proportional to v2 in the equation above with the stress-energy terms of L0G ,

eq. (5.48), we have the pieces in the lagrangien density which lead to the free propagators of the H

and gauge bosons,

LOS + LOG =
1

2
(∂µH(x))2 − hv2H2 − 1

4
K
AµνKµν

A

−1

2
K∗

µνKµν +
e2v2

4 sin2 θ
W

W ∗
µW

µ

−1

4
K
ZµνKµν

Z
+

e2v2

8 sin2 θ
W
cos2 θ

W

ZµZ
µ (8.17)

Using the same method as in sec. 7.1 we can derive the propagators of the H scalar and the gauge

bosons

G(k) =
i

k2 −M2
H
+ iǫ

Gµν
A (k) =

−i

k2 + iǫ
gµν

Gµν
W (k) =

−i

k2 −M2
W

+ iǫ
(gµν − kµkν/M2

W )

Gµν
Z (k) =

−i

k2 −M2
Z
+ iǫ

(gµν − kµkν/M2
Z) (8.18)

We recover a massive H field with M
H
=

√
2h v as in eq. (7.8), while the W and Z bosons acquire

the masses

M
W

=
e v

2 sin θ
W

, M
Z
=

e v

2 sin θ
W
cos θ

W

, (8.19)

and the photon remains massless as no quadratic term in Aµ appears in the lagrangian. The vanishing

of the photon mass is a consequence of the surviving exact gauge symmetry U(1)emg. Note the

important relation

M
W

= M
Z
cos θ

W
(8.20)

We have the relation v = sin θ
W
M

W
/
√
πα between the vacuum expectation value of the scalar field

and the physical parameters and, plugging in numerical values, we find v ∼ 250 GeV, which is the
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basis for the claim, made in the introduction, that the non-abelian symmetry is broken at the scale of

250 GeV.

• Couplings

We consider now all the terms of LS , eq. (8.16), not contained in L0S to define the interaction

lagrangian of the Higgs boson

LIS =
e2v

2 sin2 θ
W

HW ∗
µW

µ +
e2

4 sin2 θ
W

H2W ∗
µW

µ

+
e2v

4 sin2 θ
W
cos2 θ

W

HZµZ
µ +

e2

8 sin2 θ
W
cos2 θ

W

H2ZµZ
µ

− hv H3 − h

4
H4 (8.21)

One notes that the trilinear couplings of the H boson to a pair of gauge bosons have the dimension

of a mass, proportional to the vacuum expectation value v, while the quadrilinear couplings are

dimensionless proportional to e2. One can show that, in terms of Feynman diagrams,

− the vertex HW+W− is : − i
e2v

2 sin2 θ
W

= −i
e

sin θ
W

M
W
;

− the vertex HZZ is : − i
e2v

2 sin2 θ
W
cos2 θ

W

= −i
e

sin θ
W
cos θ

W

M
Z
; (8.22)

− the vertex H2W+W− is : − i
e2

2 sin2 θ
W

− the vertex H2ZZ is : − i
e2

2 sin2 θ
W
cos2 θ

W

.

There are furthermore the H boson self-couplings proportional respectively to hv and h. These

variables are easily eliminated in favour of the observables M
W
,M

H
and one finds,

− the vertex H3: i 6hv = i 3
2

e
sin θ

W

M2

H

M
W

− the vertex H4: i 6h = i 3
4

e2

sin2 θ
W

M2

H

M2

W

. (8.23)

It is interesting to remark that the triple and the quartic H boson vertices vary as the square of the

Higgs boson mass (for fixed W mass). As an indication of the strength of the Higgs boson couplings

one finds 0.2 for the vertex H2W+W− and 0.12 for the quartic H4 term.

To complete this section we recall the gauge boson self-couplings defined in LIG, eq. (5.57) : they

are not affected by the spontaneous breaking of the symmetry, eventhough three gauge bosons have

acquired a mass.
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8.3 The Yukawa lagrangian LY and fermion masses and couplings

The scalar field Φ couples to fermions. The requirement for such couplings to exist is that the

corresponding terms in the lagrangian density be Lorentz invariant as well as invariant under a

SU(2)L ⊗ U(1)Y transformation, before the spontaneous breaking of this symmetry is implemented.

Let us recall that ΨeL and ΨqL of eq. (4.14) and Φ of eq. (8.1) are 2 under SU(2) i.e. they transform

as

δΦ = i
τ

2
α Φ, · · · , δΨ = i

τ

2
α Ψ, · · · , δΨ = −i Ψ

τ

2
α, · · · (8.24)

so that ΨeLΦ, ΨqLΦ are invariant under a SU(2)L transformation and so are the hermitian conjugates

γ0Φ†ΨeL , γ
0Φ†ΨqL. Considering now the transformation properties under U(1)Y : the combination

ΨeLΦ has hypercharge 2 and ΨqLΦ hypercharge 2/3 so that ΨeLΦ e
R
and ΨqLΦ d

R
(see table eq. (4.27)

for the hypercharge assignments) are invariant under a SU(2)L ⊗U(1)Y gauge transformation. Their

hermitian conjugates are : e
R
Φ† ΨeL and d

R
Φ† ΨqL . Since these terms are also Lorentz invariants

they satisfy all criteria to enter LY .

One can construct another type of group invariant with the help of Φ̃ = iτ
2
Φ∗ which is a SU(2)

doublet : indeed one can show

δΦ̃ ≡ δ(iτ
2
Φ∗) = iτ

2
δΦ∗ = iτ

2
(−i

τ
∗

2
α) Φ∗ = (i

τ

2
α) Φ̃ (8.25)

where one has used for the last equality the property iτ
2
τ
∗ = −τ (iτ

2
). The combinations ΨeLiτ2Φ

∗and

ΨqLiτ2Φ
∗ are invariant under a SU(2)L transformation and have hypercharge 0 and -4/3 (y

Φ
∗ = −y

Φ
=

−1), respectively. Thus ΨqLiτ2Φ
∗ u

R
= ΨqLΦ̃ u

R
is invariant under a group transformation. Had we

included a right-handed neutrino the contribution ΨeLiτ2Φ
∗ ν

R
= ΨeLΦ̃ ν

R
would satisfy the conditions

but we will ignore it here (see sec. 12). Thus the Yukawa lagrangian then takes the form

LY = − cd Ψq
L
Φ d

R
− cu Ψq

L
Φ̃ u

R
− ce ΨeLΦ e

R
+ h.c. + other families, (8.26)

where we have explicitely written out the terms involving the first family of fermions (ν, e;u, d). Six

other parameters should be similarly introduced for the couplings of the second and third families so

that nine new parameters appear in the model.

Implementing spontaneous symmetry breaking, in the unitary gauge, i.e. substituting in LY the

expression of Φ as given in the right-hand side of eq. (8.14), we derive

LY = − cd
v +H√

2
dd − cu

v +H√
2

uu − ce
v +H√

2
ee + other families. (8.27)
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From this expression we relate the mass of a fermion f to the vacuum expectation value v via

mf = cf
v√
2
. (8.28)

This is not a prediction of the theory since the parameters cf are unknown and will be adjusted so

as to obtain the “physical” mass of the corresponding fermion. Furthermore, no relation is expected

between the masses of partners of a given family since one parameter is introduced for each of the

fermion type in a family. One may remark that the only “prediction” is that the neutrino remains

massless as a consequence of the absence a right-handed neutrino. On the other hand, the Higgs

couplings to the fermions are predicted, if the fermion masses are known,

gf =
cf√
2
=

mf

v
=

e

2 sin θ
W

mf

M
W

, (8.29)

where eqs. (8.28) and (8.19) have been used: the Higgs particle couples to a fermion flavour in pro-

portion to the fermion mass, implying that the top quark could play a major role in the production

and/or decay of the Higgs particle (mt ∼ 175 GeV) while the electron and light fermion contribu-

tions can be safely neglected. It is a puzzle why one observes such a large spectrum of masses from

me = .511 10−3 GeV to mt = 173.21 GeV! No model naturally “explains” this fact.

• Remark

In sec. 2.3 we mentioned a problem related to massive gauge bosons namely the bad asymptotic

behavior of the cross section of W pair production in e−e+ colliders. This was illustrated on the

simpler case ν ν̄ → W− W+ showing that the longitudinal polarisation states yield a cross section

violating the Froissart bound if one keeps only the neutrino exchange diagram. Coming back to

e− e+ → W− W+ we leave it to the reader to check that, keeping fermion mass terms and including

all diagrams in the unitary gauge, as shown in Fig. 2, the corresponding cross section is asymptotically

finite. At higher orders, loop diagrams involve massive gauge boson propagators: in the unitary gauge

e−

e+

W−

W+

p1

p2

p3

p4

νe
γ, Z

W−

W+
H

W−

W+

Figure 2: The e− e+ → W− W+ diagrams at lowest order in the unitary gauge.

they do not converge to 0 when k2 → ∞ and this leads to an apparently non-renormalisable theory.
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As explained in detail for the abelian case, the way out is to work in a “renormalisable” gauge (the

’t Hooft gauges) where the gauge boson propagators have the form eq. (7.22) and the Golstone modes

ω are explicitely kept in the calculation.

8.4 The Higgs boson discovery

As an application we consider Higgs production in proton-proton colliders at the LHC at a center of

mass energy
√
s = 7, 8 or 13 TeV. The Higgs boson could be produced in the annihilation of light

proton

Higgs
g

g

t

proton

Figure 3: Higgs production mechanism at hadron-hadron colliders : the dominant contribution arises
from the subprocess where two gluons couple to the Higgs via a top quark loop. Another diagram with
the fermion arrow reversed should be added.

W

γ

γ

H
t

γ

γ

H H

γ

γ

W

W

Figure 4: Higgs decay mechanism into two photons: The dominant contributions arises from top quark
loops and W boson loops. The final photons should be symmetrised in the first two diagrams.

quarks and antiquarks of the initial hadrons, q+ q̄ → H, but such a coupling, eq. (8.29), is suppressed

by a factor mf/v ≃ mf/250 with mf , the mass of the quark, measured in GeV. The direct process

tt → H is possible but it is, of course, suppressed because of the negligibly small density of top quarks

in the proton. For a Higgs mass below about 500 GeV it turns out that the dominant process is

gluon-gluon fusion where the effective Higgs coupling to the gluon-gluon system is via a top quark

loop as indicated in Fig. 3. The discovery channels of the Higgs boson have been H → Z Z∗ → 4
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Figure 5: ATLAS (Phys. Rev. D90 (2014) 112015) results on Higgs observation through its decay
into 2 photons.

charged leptons (direct HZZ coupling ∝ eM
Z
) and H → γ γ. As shown in fig. 4 the two photon

channel involves again a virtual top loop as well as W± loops. The results of the ATLAS and CMS

collaborations are shown in Figs. 5 and 6: they illustrate the difficulty to extract the small H → γ γ

signal from a huge background, essentially q q̄ → γ γ and its large associated QCD corrections. The

H boson, of mass MH = 125.09 GeV, cannot decay in a top pair of mass 2∗173.21 Gev but can decay

into a bottom-antibottom pair. However the background in this channel is too large to be able to

extract the Higgs signal, but the decay H → b+ b̄, with H produced in association with a vector boson,

has been studied by ATLAS12 and CMS13. Other decay channels which have been considered and will

studied at the High Luminosity LHC and the High Energy (27 GeV) LHC are H → WW ∗ → lνl′ν ′,

12ATLAS Collaboration, M. Aaboud et al., Phys. Lett. B786 (2018) 59, arXiv:1808.08238 [hep-ex].
13CMS Collaboration,Phys. Rev. Lett. 121 (2018) 121801, arXiv:1808.08242 [hep-ex].
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Figure 6: CMS (Eur. Phys. J. C76 (2016) 13) results on Higgs observation through its decay into 2
photons.

H → τ−τ+ with the τ ’s decaying leptonically or hadronically and H → µ−µ+.14

The next two sections are devoted to a discussion of important production and decay mechanisms of

the Higgs boson. Other exercises on the Standard Model can be found at

https://lectures.lapth.cnrs.fr/standard_model/cours/exo_en.pdf.

8.5 Conclusions

At this point one has, in a first approximation, a complete model for the electroweak interactions. It

contains a massive scalar particle, a massless and three massive gauge bosons, with propagators as

in eqs. (8.18). All couplings between bosons and bosons to fermions are given assuming no mixing

between the three generations of matter fields. The generation mixing is dealt with in sec. 11.

14Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134, [hep-ph].
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