9 Exercise : study of the reaction proton + proton - H + X

The mass of the Higgs boson is large enough to justify the use of the parton model and perturbative

QCD to study the production of a Higgs boson in proton-proton collisions.

9.1 The gluon-gluon fusion mechanism

In this framework, considering only the dominant process via gluon-gluon fusion, the hadronic cross

section of the inclusive reaction p(ki) + p(k2) — H(ps) + X can be written as:
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where Ff (x, M?) stands for the gluon density in the proton, the gluon carrying a fraction z of the
proton four-momentum, evolved at the factorisation scale M. The quantity 644 is the cross section
of the partonic reaction g(p1) + g(p2) — H(ps). The 4-momentum of the initial gluons are such that

p1 = x1 k1 and ps = x9 ko. The partonic cross section itself is given by:
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with |T|? the matrix element squared averaged over initial polarisations and colours. Transform-
ing d3p3/(2 F3) in dips 6T (p3 — M%), the integration on p3 can be performed easily with the Dirac
distribution and we get:
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with the total energy squared S = (k; + ko)?> = 2ki.ky (the proton mass is neglected). Injecting

eq. (9.3) in eq. (9.1), we get for the hadronic cross section:

dx dx -
aH_/ 1/ W2 B M) FP (00, M) T 6% (1 22§ — ME) TP (9.4)

The integration over xs can be performed with the help of the remaining Dirac distribution to find:
1
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The bounds on integration are obtained from the constraints 0 < x1,x2 < 1 and M12{ /S < zyme <1
which lead to M% /(21 5) < x3 <1and M%/S < z; < 1. We compute now |T'|2. At the lowest order,
three diagrams contribute to the partonic process g(p1) + g(p2) — H(p3):
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The amplitude T3 vanishes because it is proportional to Tr[T?], T® traceless, a generator of the
SU(3) colour algebra. Applying the Feynman rules in n # 4 dimensions to tame potential ultraviolet
divergencies (u is the arbirary mass introduced when going to n dimensions) and taking into account
the factor —1 for a fermion loop, the amplitude 7} is given by:
Tl — _gg%Tr{TaTb} #4—77 d"k Tr v (%‘i'mq) 7/1 (%_Idl"i'mq) : (%‘1'1752‘1'7”(1) :
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where g7 is the strong interaction coupling of a gluon of colour a to a quark, my/v (see eq. (8.29)), the
coupling of the quarks to the Higgs boson. In the second equation the relation 1/v =e/2 sin6,, M,,,
eq. (8.19) is used and T'r [T or b] = 04p/2 takes care of the sum on the quark colours in the loop.
Setting

NFY(k) = Tr [y (K +me) " (K= 1+ mq) (K + P +my)]

and computing the trace on the Dirac matrices as usual, we get:

Nt (k) = dmg {g""(k —p1).(k +p2) + (k +p2)” (k —p1)" — (k — p1)” (k + p2)!" + k" (k + p2)"
+(k +p2)” K — g"V k(k + p2) + K (k —p) + k* (k= p1)” — ¢ k.(k — p1) + m g*"'}
= 4dmg {g"" (m — k> — p1.p2) +4kF K" — 2K plf + 2kF ply + p{ ph — pypl} (9.7)

In eq. (9.7), all the terms proportional to p} and p4 can be dropped because they will vanish after

contraction with the gluon polarisation vectors. The quantity N*”(k) becomes:

NV (k) = 4mg {g"" (m? — k* — p1.p2) + 4 k" K + pY ph } . (9.8)
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Then, two Feynman parameters x and y are introduced to linearize the denominator:

T1 = 2Kl“’/ dyy/ dZL'/ d"k N'uy
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We shift the loop four-momentum k =1 — (p2 (1 — x) — p; ) y. The factor N*#¥(k) contains terms of
the type k? and k* k¥ which transform under the shift as:

kK2~ 12—2y%2(1 —2)p1.p2
kHEY o~ ghv/nl? —y?x (1 —x)phpy
All odd powers of | will vanish after the integration over [, so they have been removed. Eq. (9.8)
becomes:
4 1
NtV (k) =4m, {g‘“’ K; - 1> 12 —i—mg +2p1.p2 (yzx(l —z)— 5)} +piph (1—4y*x (1 - x))}
(9.10)
The amplitude T3 is then:
dnl (A1 1> + A2) g"¥ + Bpi phy
= 2K,, d d - 9.11
T B / Z/y/ 33/ Myq (2= R2+ic) ( )
with:
R? = mg —29y?x (1 —2)p1.p2
A1 == 4/n -1
Ay = 2mZ — p1.p2 — R
B = 1—4y%2(1 —2) = 1-2(m2+ R?)/p1.p2

The integration over the four-momentum [ yields the following result!®:

T = n n/24qu‘“’/ dyy/ da:[ (2__> (Rz_z.e)—2+n/2 e

2

T (3— g) (R2—ie) ™% (Ay 9" + Bpi p)| (9.12)

15The general formula is:

/ d"k K — (R —igr-mry GO D04 3) Tm —r— 3)

@m)r k2 — R +igm (4m)3  T(Z) T(m)
(=™ 47 © ovtrem D2+71—¢) T(m—7r—2+¢)
TSP <R2—ze> (B T(2—¢) T(m)
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The coefficient in front of the ultraviolet divergence I (2 — %) vanishes for n = 4, more precisely:

HStr (- 3)- -3 P -rf-3)

So, actually, there is no divergence in this amplitude and we can now take safely n = 4 so that

T ( — %) reduces to 1. In addition, using pi.p2 = M%I/2, we get:

7 2pY p2
T = Wélquw, <g’“’ M2 dyy d:z:
M3, 4m?2 1
94 H (1 _ q 9.13
[ T < Mé)mg—ny(l—a:)Mi,—ie)( )
To perform the integration on the Feynman parameters, let us introduce the function:
1 1 1
= d d 9.14
/0 a:/o yyl—y23:(1—:n)/z—ie (9:.14)
with z = mg /M12{ positive. The integration over y can be easily performed to get:
1
1 1-—
J(z) = —E/da:iln 1—u—ie
2 Jo z(l—x) z
1
z 1 1 z(l—z) .
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1
d 1—
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0 x z

The roots of the argument of the logarithm are given by:
0<z<1t mo=g3+t3V/T—dztie
z>% x172:%i%\/4z—1,

In (1—M—ie> “n <§> Fln(z —a1) + In(z — 29) |

z

SO

but In(1/z) = —In(zy 22) = —In(—x1) — In(—x2) because z1 and z9 are complex conjugate. The two
terms In(z — x1) and In(—z1) can be grouped because the imaginary parts of the two arguments are

the same and similarly for the terms in z3. So we get for J(z):

I
) e (B)]
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It can be shown, c.f. sec. 9.3, that J(z) can be written using only the logarihtm function whatever

the value of 7z is:

z <1H<ﬂ)—iﬂ')2 z2<1/4

J(z) = — Ihyl=dz (9.17)
2 (i/Ez—1-1
So the amplitude T} is given by:
2 Y “ M2
T = LZlqu,w ry — p12p2 H
(47)? Mz ) 2m2
S SRR W (9.18)
X — —4— — . .
Mg My My
For the following, we set:
Flz)=2z+(1—-42) J(2) (9.19)

The function F(z) can be complex or real following the ratio z = mg /M?%. In fig. 7, we draw the
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Figure 7: Real and imaginary part of the function F(z) with respect to z = mg /MI%I

real and imaginary parts of F(z) with respect to z (see sec. 9.3). It can be shown that this function
has the limit 1/3 when z — oco. To show that let us come back to eq. (9.14) which gives the integral
representation of the function J(z), when z — oo, the denominator cannot vanish so we can take

safely the limit ¢ — 0 and write:

T —a)/s ~1+y?ec(l—x)/z.
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So in this limit, the function J(z) behaves as:
1 /1 1
/ /ydy+—/ dmx(l—x)/dyy?’
zJo 0
1

and therefor the function F(z) — 1/3 when z — co. Since the amplitude 75 can be obtained from the
amplitude 77 by changing €(p1),p1 <> €(p2), p2, it is clear from eq. (9.18) that 75 = T3. So the total
amplitude T = T1 + T3 is:

i ase M? 2pY ph m?
T — "H 6ab a b wr 12 q 21
“ix 6, MM, (1) €,(p2) <g ) F 7 (9.21)

where the notation as = g2/(47) has been introduced for the strong interaction coupling. Note that in

eq. (9.21), if we replace €(p1) (respectively e(p2)) by p1 (resp. p2), the amplitude T' vanishes because:

2pY ph
Pipu <g,u1/ — = | = 0
MH

Let us now compute the modulus squared of the amplitude averaging over the initial spins and colours:

- 1
T = INZoIp Z Z TP

polarisations colours

For the average over the initial spins, we have to compute something like:

a C 14 2pl/pu o 2p p
S X g e e (o - 2 ) (o - 2

polarisations

2pupﬂ " 2papp
= 0%°0" (—gup) (—9vo) (9“”—T}22 gr7 - L2
H

— 26ac(5bd

Note that we have taken _  €;(p1)€;*(p1) = —d“¢g"” this is justified in this case because the
replacement of € (p1) by pi' (¢”(p2) by p2) gave zero. Now, for the average over the initial colours, we
have to compute:

C = Z 5ab60d6a05bdzz(5aa:N2_l
a,b,c,d a

where N is the number of colours. Finally we obtain for the matrix element squared:

[
M

2
ozgonffI

87 (N? —1)(sinf,, M,,)?

712 = , (9.22)
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where the fine structure constant o = e2?/47 is introduced. So far, we considered only one quark

flavour in the loop, in principle we need to sum over all the possible flavours of quarks so that eq. (9.5)

becomes:
2

1 o3 a My i
OH = 1 v
8 (N2 — 1) (Sln 9W MW)2 S q:d,UZ,S,C,lLt <MI2{

) 2

d M
< R R (2 ar2) -
iy T x1 S

In practice, we can content ourselves to keep only the top quark since the function F is vanishingly
small for other quark species. The scale M which appears in the partonic densities of eq. (9.23) must
be taken of the order of the Higgs boson mass (M) because this is the only “hard” energy scale

much greater than Agcp) which remains.
Q

9.2 Function Li,

The Lis function is defined as:

1 —Z
thpr_éﬂﬁkﬂgﬂcr_é(ﬁkﬂ7_ﬁ (9.24)

with z complex. From its definition, the function Lis has a cut in the complex plan on the real axis

[1,00[. Furthermore, we have the following property:

. 2 <1
mm:E:Zﬁ.
k=1

In the case where z has an infinitesimal imaginary part z = x £ i€ and a real part x > 1, from the

definition of the function Lis, we can show that:

: cye=0 o 1 1. o1 ™ 1
Lig (x £ie) = —Liy <E>—§1n <x>+ 3 :Fz7rln<x>. (9.25)

This equation gives us the prescription for x > 1. More generally, if z is a complex number with a
non vanishing imaginary part (it is always the case if we carefuly keep track of the small imaginary

part €), we have the following relations:

2
Li, (%) = —Liy(2) — 5 % In?(—2) (9.26)
Lis(1 —2) = —Liy(2)+ %2 —In(1 - 2) In(2) . (9.27)
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9.3 Different rewritting of the function J(z)

We can apply the relations in the section above to simplify J(z) (eq. (9.16)). Let us start with the
case where z < 1/4. In this case the real parts of x1 and x5 are between 0 and 1. We can use eq. (9.25)

and we obtain that:

Liy <$i> + Lis <i> — Lis(y) — Lis(1 — y) — = m2(y) — = m2(1 —y)

1 Z2
+ Tﬂ —im(In(1-y) —In(y)) , (9.28)

with y the real part of x1, y = 1/2(1 + v/1 —42z). Then, we can apply the relation (9.27) to the
equation (9.28), this gives:

(1 (1 1 1
Lo () +1 () = —5 1)~ 5 W21 =)+ ) (1 )
7T2
+ 5 —im(In(l —y) — In(y))

2

_ _% (In(1 = y) — In(y))* + = —im (In(1 - y) —In(y)) . (9.29)

As 0 <y <1, we can group the logarithms and we get:

(D)ot (L) = L )ed]
= —% In? <1—i> : (9.30)

In the case where z > 1/4, x1 and x5 are complex conjugate but with an imaginary part which is not

infinitesimal. We will use the relation (9.26) to write that:

Lis (— ) + Lis ( Lis(a1) — Lia(1 — 1) — - 2(—ry) — - (1 — 1)~ & (9.31)
i [ — ir| — ) =—Li — Lip(1 — —=In“(—z1) — = In -1)——. .
2\ 2 2\ 2, 2(Z1 2 T1 5 1)~ 5 1 3
Then, applying eq. (9.27), the sum of the dilogarithms becomes:
1 1 1 1 w2
Lig (— | +Lis [ — ] = —=In®(—z1)— = In?(z; — 1) — —
io <x1> + Lis <$2> 5 In (—x1) 5 n (x1 — 1) 5
+1In(z1) In(1 — 1)
1 2
= —5(n(@; — 1)~ In(~1))* - %
—In(z; — 1) In(—z1) + In(z1) In(1 — 1) . (9.32)

Let us remark that x; has a real part and an imaginary part which are both positive, it lies then in the

first quadrand. With the convention that the cut of the logarithm is along the negative real axis, then
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the phase of a complex number in the main Rieman sheet is between —7 and 7, if x1 is parametrised

1 (0—m)

like pe'? then —z; = pe and so the relation between the logarithms of z; and —x; is:

In(—z1) =In(x;) —i7 .

In the same way, 1 — 2; has a positive real part and a negative imaginary part, so if 1 — z; = pe'?

i (6+m)

then 1 — 1 = pe and we have that:

In(zy — 1) =In(l —21) +im.
Using that, we write:
In(zy) In(1 — z1) = In(—z1) In(zy — 1) +i7w (n(z; — 1) — In(—x1)) + 7%, (9.33)

so the sum of the two dilogarithms can be written:
1 1 1 2
Lig — | + Li2 — = ——= (111(331 — 1) — 111(—(51))2 + 7T_ + X0 (111(331 — 1) — ln(—a:l))
z 2 2 2
1 2

= —5 (e~ 1) ~In(~a1) — in] (9.34)

The term i 7 can be reabsorbed by writing In(1—z1 ) instead of In(x; —1) and remarking that 1—x1 = x2

and —x1 have a same sign imaginary part, then we finally get:

1 1 1 1
Lig (—) + Lig <—> = —— In? (1——) . (9.35)
1 T2 2 1

Thus, J(z) can be simplified such that only the logarithmic function is used for buth cases:

2 (V1—4z—1+ie
o f W (YE) =<1/

2\ we (M) i

J(z) = — (9.36)
To conclude these technical remarks, we show how to rewrite J(z) to make easy the comparison with

the results which can be found in the litterature. In the case z < 1/4, it is easy to show that:

ln<\/1—4z—1+ie>_ln<\/1—4z—1+i€>
Vi—dz+1+ie) VI—4dz+1
<1+\/1—4z>
—ln R —— +’L7T
1—-+vV1—-4z

(9.37)

For the case z > 1/4, we write:

N (m—1> Vi-d iy (9.38)
Viz—1+1 \/;—Z\/; ' |

73



Remarking that the complex number /1 — 1/4 2 +i+/1/4 2 has a modulus which is equal to 1 and it

o(m) - (P 3)
(D)

= 24 arcsin < —> . (9.39)
Then, the function J(z) becomes:

J(z) = 42 ~i (ln@%)—”f z<1/4

2 arcsin? (Wﬁ) z>1/4

lies in the first quadrand, we show:

=
o

(9.40)
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