
9 Exercise : study of the reaction proton + proton → H+X

The mass of the Higgs boson is large enough to justify the use of the parton model and perturbative

QCD to study the production of a Higgs boson in proton-proton collisions.

9.1 The gluon-gluon fusion mechanism

In this framework, considering only the dominant process via gluon-gluon fusion, the hadronic cross

section of the inclusive reaction p(k1) + p(k2) → H(p3) +X can be written as:

σH =

∫ 1

0
dx1

∫ 1

0
dx2 F

P
g (x1,M

2)FP
g (x2,M

2) σ̂g g→H , (9.1)

where FP
g (x,M2) stands for the gluon density in the proton, the gluon carrying a fraction x of the

proton four-momentum, evolved at the factorisation scale M . The quantity σ̂g g→H is the cross section

of the partonic reaction g(p1) + g(p2) → H(p3). The 4-momentum of the initial gluons are such that

p1 = x1 k1 and p2 = x2 k2. The partonic cross section itself is given by:

σ̂g g→H =
1

4 p1.p2

∫

d3p3
(2π)3 2E3

(2π)4 δ4(p1 + p2 − p3) |T̄ |2, (9.2)

with |T̄ |2 the matrix element squared averaged over initial polarisations and colours. Transform-

ing d3p3/(2E3) in d4p3 δ
+(p23 − M2

H), the integration on p3 can be performed easily with the Dirac

distribution and we get:

σ̂g g→H =
1

2x1 x2 S
(2π) δ+(x1 x2 S −M2

H) |T̄ |2, (9.3)

with the total energy squared S = (k1 + k2)
2 = 2 k1.k2 (the proton mass is neglected). Injecting

eq. (9.3) in eq. (9.1), we get for the hadronic cross section:

σH =

∫ 1

0

dx1
x1

∫ 1

0

dx2
x2

FP
g (x1,M

2)FP
g (x2,M

2)
π

S
δ+(x1 x2 S −M2

H) |T̄ |2. (9.4)

The integration over x2 can be performed with the help of the remaining Dirac distribution to find:

σH =
π

M2
H S

∫ 1

M2
H
/S

dx1
x1

FP
g (x1,M

2)FP
g

(

M2
H

x1 S
,M2

)

|T̄ |2 (9.5)

The bounds on integration are obtained from the constraints 0 < x1, x2 ≤ 1 and M2
H/S ≤ x1x2 ≤ 1

which lead to M2
H/(x1 S) ≤ x2 ≤ 1 and M2

H/S ≤ x1 ≤ 1. We compute now |T̄ |2. At the lowest order,

three diagrams contribute to the partonic process g(p1) + g(p2) → H(p3):
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g(p1) g(p1) g(p1)

g(p2) g(p2) g(p2)

k

k − p1

k + p2

H(p3) H(p3) H(p3)

T1 T2 T3

The amplitude T3 vanishes because it is proportional to Tr[T a], T a traceless, a generator of the

SU(3) colour algebra. Applying the Feynman rules in n 6= 4 dimensions to tame potential ultraviolet

divergencies (µ is the arbirary mass introduced when going to n dimensions) and taking into account

the factor −1 for a fermion loop, the amplitude T1 is given by:

T1 = −g2s
mq

v
Tr
[

T aT b
]

µ4−n

∫

dnk

(2π)n
Tr

[

γν
(6k +mq)

k2 −m2
q + i ǫ

γµ
(6k − 6p1 +mq)

(k − p1)2 −m2
q + i ǫ

(6k + 6p2 +mq)

(k + p2)2 −m2
q + i ǫ

]

× ǫaµ(p1) ǫ
b
ν(p2)

= − g2s emq

4 sin θ
W
M

W

µ4−n δab ǫaµ(p1) ǫ
b
ν(p2)

∫

dnk

(2π)n

× Tr [γν (6k +mq) γ
µ (6k − 6p1 +mq) (6k + 6p2 +mq)]

(k2 −m2
q + i ǫ) ((k − p1)2 −m2

q + i ǫ) ((k + p2)2 −m2
q + i ǫ)

(9.6)

where gsT
a is the strong interaction coupling of a gluon of colour a to a quark, mq/v (see eq. (8.29)), the

coupling of the quarks to the Higgs boson. In the second equation the relation 1/v = e/2 sin θ
W
M

W
,

eq. (8.19) is used and Tr
[

T aT b
]

= δab/2 takes care of the sum on the quark colours in the loop.

Setting

Nµν(k) = Tr [γν (6k +mq) γ
µ (6k − 6p1 +mq) (6k + 6p2 +mq)]

and computing the trace on the Dirac matrices as usual, we get:

Nµν(k) = 4mq {gµ ν(k − p1).(k + p2) + (k + p2)
ν (k − p1)

µ − (k − p1)
ν (k + p2)

µ + kν (k + p2)
µ

+(k + p2)
ν kµ − gµ ν k.(k + p2) + kν (k − p1)

µ + kµ (k − p1)
ν − gµ ν k.(k − p1) +m2

q g
µ ν
}

= 4mq

{

gµ ν (m2
q − k2 − p1.p2) + 4 kµ kν − 2 kν pµ1 + 2 kµ pν2 + pν1 p

µ
2 − pν2 p

µ
1

}

. (9.7)

In eq. (9.7), all the terms proportional to pµ1 and pν2 can be dropped because they will vanish after

contraction with the gluon polarisation vectors. The quantity Nµν(k) becomes:

Nµ ν(k) = 4mq

{

gµ ν (m2
q − k2 − p1.p2) + 4 kµ kν + pν1 p

µ
2

}

. (9.8)
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Then, two Feynman parameters x and y are introduced to linearize the denominator:

T1 = 2Kµ ν

∫ 1

0
dy y

∫ 1

0
dx

∫

dnk

(2π)n
Nµ ν(k)

×
[

(1− y) (k2 −m2
q + i ǫ) + x y ((k − p1)

2 −m2
q + i ǫ) + (1− x) y ((k + p2)

2 −m2
q + i ǫ)

]−3

= 2Kµ ν

∫ 1

0
dy y

∫ 1

0
dx

∫

dnk

(2π)n
Nµ ν(k)

×
[

(k + (p2 (1− x)− p1 x) y)
2 + 2 y2 x (1− x)p1.p2 −m2

q + i ǫ
]−3

(9.9)

with

Kµν = − g2s emq

4 sin θ
W
M

W

µ4−n δab ǫaµ(p1) ǫ
b
ν(p2)

We shift the loop four-momentum k = l − (p2 (1 − x)− p1 x) y. The factor Nµν(k) contains terms of

the type k2 and kµ kν which transform under the shift as:

k2 ≃ l2 − 2 y2 x (1− x) p1.p2
kµ kν ≃ gµ ν/n l2 − y2 x (1 − x) pµ2 p

ν
1

All odd powers of l will vanish after the integration over l, so they have been removed. Eq. (9.8)

becomes:

Nµν(k) = 4mq

{

gµ ν

[(

4

n
− 1

)

l2 +m2
q + 2 p1.p2

(

y2 x (1− x)− 1

2

)]

+ pν1 p
µ
2

(

1− 4 y2 x (1− x)
)

}

(9.10)

The amplitude T1 is then:

T1 = 2Kµ ν

∫ 1

0
dy y

∫ 1

0
dx

∫

dnl

(2π)n
4mq

(A1 l
2 +A2) g

µ ν +B pν1 p
µ
2

(l2 −R2 + i ǫ)3
(9.11)

with:
R2 = m2

q − 2 y2 x (1− x) p1.p2
A1 = 4/n − 1
A2 = 2m2

q − p1.p2 −R2

B = 1− 4 y2 x (1− x) = 1− 2(m2
q +R2)/p1.p2

The integration over the four-momentum l yields the following result15:

T1 =
i

(4π)n/2
4mq Kµ ν

∫ 1

0
dy y

∫ 1

0
dx

[

n

2

4− n

n
Γ
(

2− n

2

)

(

R2 − i ǫ
)−2+n/2

gµν

− Γ
(

3− n

2

)

(

R2 − i ǫ
)−3+n/2

(A2 g
µ ν +B pν1 p

µ
2 )

]

(9.12)

15The general formula is:
∫

d
n
k

(2π)n
k
2
r

[k2
−R2 + iǫ]m

= i (R2
− iǫ)r−m+n

2
(−1)r−m

(4π)
n

2

Γ(r + n

2
)

Γ(n
2
)

Γ(m− r −
n

2
)

Γ(m)

= i
(−1)r−m

(4π)2

(

4π

R2
− iǫ

)

ε

(R2)2+r−m Γ(2 + r − ε)

Γ(2− ε)

Γ(m− r − 2 + ε)

Γ(m)
.
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The coefficient in front of the ultraviolet divergence Γ
(

2− n
2

)

vanishes for n = 4, more precisely:

n

2

4− n

n
Γ
(

2− n

2

)

=
(

2− n

2

)

Γ
(

2− n

2

)

= Γ
(

3− n

2

)

So, actually, there is no divergence in this amplitude and we can now take safely n = 4 so that

Γ
(

3− n
2

)

reduces to 1. In addition, using p1.p2 = M2
H/2, we get:

T1 =
i

(4π)2
4mq Kµ ν

(

gµ ν − 2 pν1 p
µ
2

M2
H

) ∫ 1

0
dy y

∫ 1

0
dx

×
[

2 +
M2

H

2

(

1−
4m2

q

M2
H

)

1

m2
q − y2 x (1− x)M2

H − i ǫ)

]

(9.13)

To perform the integration on the Feynman parameters, let us introduce the function:

J(z) =

∫ 1

0
dx

∫ 1

0
dy y

1

1− y2 x (1− x)/z − i ǫ
(9.14)

with z = m2
q/M

2
H positive. The integration over y can be easily performed to get:

J(z) = −z

2

∫ 1

0
dx

1

x (1 − x)
ln

(

1− x (1 − x)

z
− i ǫ

)

= −z

2

∫ 1

0
dx

[

1

x
+

1

(1− x)

]

ln

(

1− x (1 − x)

z
− i ǫ

)

= −z

∫ 1

0

dx

x
ln

(

1− x (1− x)

z
− i ǫ

)

. (9.15)

The roots of the argument of the logarithm are given by:

0 < z < 1
4 x1, 2 =

1
2 ± 1

2

√
1− 4 z ± i ǫ

z > 1
4 x1, 2 =

1
2 ± i

2

√
4 z − 1 ,

so

ln

(

1− x (1− x)

z
− i ǫ

)

= ln

(

1

z

)

+ ln(x− x1) + ln(x− x2) ,

but ln(1/z) = − ln(x1 x2) = − ln(−x1)− ln(−x2) because x1 and x2 are complex conjugate. The two

terms ln(x− x1) and ln(−x1) can be grouped because the imaginary parts of the two arguments are

the same and similarly for the terms in x2. So we get for J(z):

J(z) = −z

[∫ 1

0

dx

x
ln

(

1− x

x1

)

+

∫ 1

0

dx

x
ln

(

1− x

x2

)]

= z

[

Li2

(

1

x1

)

+ Li2

(

1

x2

)]

. (9.16)
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It can be shown, c.f. sec. 9.3, that J(z) can be written using only the logarihtm function whatever

the value of z is:

J(z) = −z

2







(

ln
(

1−
√
1−4 z

1+
√
1−4 z

)

− i π
)2

z ≤ 1/4

ln2
(

i
√
4 z−1−1

i
√
4 z−1+1

)

z > 1/4
. (9.17)

So the amplitude T1 is given by:

T1 =
i

(4π)2
4mq Kµ ν

(

gµ ν − 2 pν1 p
µ
2

M2
H

)

M2
H

2m2
q

×
{

2
m2

q

M2
H

+

(

1− 4
m2

q

M2
H

)

J

(

m2
q

M2
H

)}

. (9.18)

For the following, we set:

F(z) = 2 z + (1− 4 z) J (z) (9.19)

The function F(z) can be complex or real following the ratio z = m2
q/M

2
H . In fig. 7, we draw the

Figure 7: Real and imaginary part of the function F(z) with respect to z = m2
q/M

2
H

real and imaginary parts of F(z) with respect to z (see sec. 9.3). It can be shown that this function

has the limit 1/3 when z → ∞. To show that let us come back to eq. (9.14) which gives the integral

representation of the function J(z), when z → ∞, the denominator cannot vanish so we can take

safely the limit ǫ → 0 and write:

1

1− y2 x (1 − x)/z
≃ 1 + y2 x (1− x)/z .
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So in this limit, the function J(z) behaves as:

J(z) ≃
∫ 1

0
dx

∫ 1

0
y dy +

1

z

∫ 1

0
dxx (1− x)

∫ 1

0
dy y3

≃ 1

2
+

1

24 z
, (9.20)

and therefor the function F(z) → 1/3 when z → ∞. Since the amplitude T2 can be obtained from the

amplitude T1 by changing ǫ(p1), p1 ↔ ǫ(p2), p2, it is clear from eq. (9.18) that T2 = T1. So the total

amplitude T = T1 + T2 is:

T = − i

4π

αs e

sin θ
W

M2
H

M
W

δab ǫaµ(p1) ǫ
b
ν(p2)

(

gµ ν − 2 pν1 p
µ
2

M2
H

)

F
(

m2
q

M2
H

)

, (9.21)

where the notation αs = g2s/(4π) has been introduced for the strong interaction coupling. Note that in

eq. (9.21), if we replace ǫ(p1) (respectively ǫ(p2)) by p1 (resp. p2), the amplitude T vanishes because:

p1µ

(

gµ ν − 2 pν1 p
µ
2

M2
H

)

= 0

Let us now compute the modulus squared of the amplitude averaging over the initial spins and colours:

|T̄ |2 = 1

4 (N2 − 1)2

∑

polarisations

∑

colours

|T |2

For the average over the initial spins, we have to compute something like:

S =
∑

polarisations

ǫaµ(p1) ǫ
b
ν(p2) ǫ

c ⋆
ρ (p1) ǫ

d ⋆
σ (p2)

(

gµ ν − 2 pν1 p
µ
2

M2
H

)(

gρ σ − 2 pσ1 p
ρ
2

M2
H

)

= δa c δb d (−gµρ) (−gν σ)

(

gµ ν − 2 pν1 p
µ
2

M2
H

)(

gρ σ − 2 pσ1 p
ρ
2

M2
H

)

= 2 δa c δb d

Note that we have taken
∑

pol. ǫ
a
µ(p1) ǫ

c ⋆
ρ (p1) = −δa c gµ ρ this is justified in this case because the

replacement of ǫµ(p1) by pµ1 (ǫν(p2) by p2) gave zero. Now, for the average over the initial colours, we

have to compute:

C =
∑

a,b,c,d

δa b δc d δa c δb d =
∑

a

δa a = N2 − 1

where N is the number of colours. Finally we obtain for the matrix element squared:

|T̄ |2 = α2
s αM4

H

8π (N2 − 1) (sin θ
W
M

W
)2

∣

∣

∣

∣

∣

F
(

m2
q

M2
H

)∣

∣

∣

∣

∣

2

, (9.22)
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where the fine structure constant α = e2/4π is introduced. So far, we considered only one quark

flavour in the loop, in principle we need to sum over all the possible flavours of quarks so that eq. (9.5)

becomes:

σH =
1

8 (N2 − 1)

α2
s αM2

H

(sin θ
W
M

W
)2 S





∑

q=d,u,s,c,b,t

∣

∣

∣

∣

∣

F
(

m2
q

M2
H

)∣

∣

∣

∣

∣

2




×
∫ 1

M2
H
/S

dx1
x1

FP
g (x1,M

2)FP
g

(

M2
H

x1 S
,M2

)

(9.23)

In practice, we can content ourselves to keep only the top quark since the function F is vanishingly

small for other quark species. The scale M which appears in the partonic densities of eq. (9.23) must

be taken of the order of the Higgs boson mass (MH) because this is the only “hard” energy scale

(much greater than ΛQCD) which remains.

9.2 Function Li2

The Li2 function is defined as:

Li2(z) = −
∫ y

0
dt

ln(1− t)

t
= −

∫ 1

0
dt

ln(1− z t)

t
(9.24)

with z complex. From its definition, the function Li2 has a cut in the complex plan on the real axis

[1,∞[. Furthermore, we have the following property:

Li2(1) =
π2

6
=

∞
∑

k=1

1

k2
.

In the case where z has an infinitesimal imaginary part z = x ± i ǫ and a real part x > 1, from the

definition of the function Li2, we can show that:

Li2 (x± i ǫ)
ǫ→0
= −Li2

(

1

x

)

− 1

2
ln2
(

1

x

)

+
π2

3
∓ i π ln

(

1

x

)

. (9.25)

This equation gives us the prescription for x > 1. More generally, if z is a complex number with a

non vanishing imaginary part (it is always the case if we carefuly keep track of the small imaginary

part ǫ), we have the following relations:

Li2

(

1

z

)

= −Li2(z)−
π2

6
− 1

2
ln2(−z) (9.26)

Li2(1− z) = −Li2(z) +
π2

6
− ln(1− z) ln(z) . (9.27)
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9.3 Different rewritting of the function J(z)

We can apply the relations in the section above to simplify J(z) (eq. (9.16)). Let us start with the

case where z ≤ 1/4. In this case the real parts of x1 and x2 are between 0 and 1. We can use eq. (9.25)

and we obtain that:

Li2

(

1

x1

)

+ Li2

(

1

x2

)

= −Li2(y)− Li2(1− y)− 1

2
ln2(y)− 1

2
ln2(1− y)

+
2π2

3
− i π (ln(1− y)− ln(y)) , (9.28)

with y the real part of x1, y = 1/2 (1 +
√
1− 4 z). Then, we can apply the relation (9.27) to the

equation (9.28), this gives:

Li2

(

1

x1

)

+ Li2

(

1

x2

)

= −1

2
ln2(y)− 1

2
ln2(1− y) + ln(y) ln(1− y)

+
π2

2
− i π (ln(1− y)− ln(y))

= −1

2
(ln(1− y)− ln(y))2 +

π2

2
− i π (ln(1− y)− ln(y)) . (9.29)

As 0 ≤ y ≤ 1, we can group the logarithms and we get:

Li2

(

1

x1

)

+ Li2

(

1

x2

)

= −1

2

[

ln

(

1

y
− 1

)

+ i π

]2

= −1

2
ln2
(

1− 1

x1

)

. (9.30)

In the case where z > 1/4, x1 and x2 are complex conjugate but with an imaginary part which is not

infinitesimal. We will use the relation (9.26) to write that:

Li2

(

1

x1

)

+ Li2

(

1

x2

)

= −Li2(x1)− Li2(1− x1)−
1

2
ln2(−x1)−

1

2
ln2(x1 − 1)− π2

3
. (9.31)

Then, applying eq. (9.27), the sum of the dilogarithms becomes:

Li2

(

1

x1

)

+ Li2

(

1

x2

)

= −1

2
ln2(−x1)−

1

2
ln2(x1 − 1)− π2

2

+ ln(x1) ln(1− x1)

= −1

2
(ln(x1 − 1)− ln(−x1))

2 − π2

2
− ln(x1 − 1) ln(−x1) + ln(x1) ln(1− x1) . (9.32)

Let us remark that x1 has a real part and an imaginary part which are both positive, it lies then in the

first quadrand. With the convention that the cut of the logarithm is along the negative real axis, then
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the phase of a complex number in the main Rieman sheet is between −π and π, if x1 is parametrised

like ρ ei θ then −x1 = ρ ei (θ−π) and so the relation between the logarithms of x1 and −x1 is:

ln(−x1) = ln(x1)− i π .

In the same way, 1 − x1 has a positive real part and a negative imaginary part, so if 1 − x1 = ρ ei θ

then x1 − 1 = ρ ei (θ+π) and we have that:

ln(x1 − 1) = ln(1− x1) + i π .

Using that, we write:

ln(x1) ln(1− x1) = ln(−x1) ln(x1 − 1) + i π (ln(x1 − 1)− ln(−x1)) + π2 , (9.33)

so the sum of the two dilogarithms can be written:

Li2

(

1

x1

)

+ Li2

(

1

x2

)

= −1

2
(ln(x1 − 1)− ln(−x1))

2 +
π2

2
+ i π (ln(x1 − 1)− ln(−x1))

= −1

2
[ln(x1 − 1)− ln(−x1)− i π]2 . (9.34)

The term i π can be reabsorbed by writing ln(1−x1) instead of ln(x1−1) and remarking that 1−x1 = x2

and −x1 have a same sign imaginary part, then we finally get:

Li2

(

1

x1

)

+ Li2

(

1

x2

)

= −1

2
ln2
(

1− 1

x1

)

. (9.35)

Thus, J(z) can be simplified such that only the logarithmic function is used for buth cases:

J(z) = −z

2







ln2
(√

1−4 z−1+i ǫ√
1−4 z+1+i ǫ

)

z ≤ 1/4

ln2
(

i
√
4 z−1−1

i
√
4 z−1+1

)

z > 1/4
. (9.36)

To conclude these technical remarks, we show how to rewrite J(z) to make easy the comparison with

the results which can be found in the litterature. In the case z ≤ 1/4, it is easy to show that:

ln

(
√
1− 4 z − 1 + i ǫ√
1− 4 z + 1 + i ǫ

)

= ln

(
√
1− 4 z − 1√
1− 4 z + 1

+ i ǫ

)

= − ln

(

1 +
√
1− 4 z

1−
√
1− 4 z

)

+ i π . (9.37)

For the case z > 1/4, we write:

ln

(

i
√
4 z − 1− 1

i
√
4 z − 1 + 1

)

= ln





√

1− 1
4 z + i

√

1
4 z

√

1− 1
4 z − i

√

1
4 z



 . (9.38)
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Remarking that the complex number
√

1− 1/4 z + i
√

1/4 z has a modulus which is equal to 1 and it

lies in the first quadrand, we show:

ln

(

i
√
4 z − 1− 1

i
√
4 z − 1 + 1

)

= ln





(

√

1− 1

4 z
+ i

√

1

4 z

)2




= 2 ln

(

√

1− 1

4 z
+ i

√

1

4 z

)

= 2 i arcsin

(

√

1

4 z

)

. (9.39)

Then, the function J(z) becomes:

J(z) =
4 z

2







−1
4

(

ln
(

1+
√
1−4 z

1−
√
1−4 z

)

− i π
)2

z ≤ 1/4

arcsin2
(
√

1
4 z

)

z > 1/4
. (9.40)
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