form code for the decay of the Higgs boson

Jean-Philippe Guillet
February 4, 2020

1 Code FORM

The purpose of this note is not to give a course on form, but only to present an example with
some explanations and we refer the readers to the full reference:
http://www.nikhef .nl/~form/maindir/documentation/reference/online/
It exists also some courses on the web.

A form program is made as a sequence of modules. A module consists in general of several
types of statements (in the right order):

- Declarations: these are the declarations of variables.

- Specifications: these tell what to do with existing expressions as a whole.

Definitions: these define new expressions.

Executable statements: the operations on all active expressions.

OutputSpecifications: these specify the output representation.

End-of-module specifications: extra settings that are for this module only.

We will decompose the program form for the computation of the decay of the Higgs boson
via W loops in term of the various modules.

Module 1

1%
2 * Reaction H(q) —> Gamma(pl)+Gamma(p2) : W loops
*

i Vector pl,p2,q,k,[k+p2],[ktpl],[ktq],1;

-

NONONON NN NN
=SS B N R)

NN
© 0 ~

31

Symbol Mw,Mz,q2,x,y,[1/n],12 ,R2,n,D1,D2,D0,D3;

* Uncomment this line

x*Indice alphal=4,alpha2=4,betal=4,beta2=4 mul=4,mu2=4;

* and comment the following line for a computation in four dimension
Indice alphal=n,alpha2=n,betal=n,beta2=n,mul=n,mu2=n;

x end comment

*
* The differents diagrams are split in two parts
* R contains the common part : the vertex HWW and the two
x adjacent W's propagators
x* Ml contains the two couplings GumaWW and the extra W propagator
* M2 : same thing as Ml with pl <—> p2
* M3 : coupling WWGammaGamma
*
L Ml = (d_(alpha2 ,mu2)*([k+q](betal)+p2(betal))
+ ~(mu2, betal)*(—p2(alpha2)+[k+pl](alpha2))
+d_(betal ,alpha2)x(—[k+pl](mu2)—[k+q](mu2)))=
(d_(betal ,beta2)—[k+pl](betal)*[k+pl]|(beta2)/Mw 2)x
(d-(beta2 ,mul)*([k—i—pl](alpha1)+p1(alpha1))
+d_(mul, alphal)*(—pl(beta2)+k(beta2))
+d_(beta2 ,alphal)x ([k+pl](mul)—k(mul)));
*
L M2 = (d_(alpha2 ,mul)x*([k+q](betal)+pl(betal))
+d_(mul, betal)x(—pl(alpha2)+[k+p2](alpha2))
+d_(betal ,alpha2)x*(—[k+p2](mul)—[k+q](mul)))=
(d-(betal ,beta2)—[k+p2](betal)x[k+p2](beta2)/Mw 2)x
(d_(beta2 ,mu2)*([k+p2](alphal)+p2(alphal))
+d_(mu2, alphal)*(—p2(beta2)+k(beta2))
+d_(beta2 ,alphal)=x ([k+p2] (mu2)—k (mu2)));
*
L M3 = (d_(alphal ,mul)*xd_(alpha2,mu2)+d_(alphal ;,mu2)xd_(alpha2 ,mul)

—2#d_(mul,mu2)+d_(alphal ,alpha2));

In form, all variables must be declared before being used. The types of variables can be:
Symbol, Index, Vector, Tensor, (C) Function, ... (this is not an exhaustive list).
Note that the variable names can include operators such as + or / provided that the character
string is enclosed in square brackets ([]) (see line 3). Line 4 declares indices that are n dimensions
(that is, they take values between 1 and n).

Then, we define four local expressions (local means that the scope of these expressions will
be the file) starting with L. The expressions M1, M2, M3 and R correspond to the equations
(10.11), (10.12), (10.13) and (10.14) without the coupling terms and without the denominators.

The form k(mul) where k is a vector and mul an index corresponds to k*', d_(mul, mu2) a
g.u'l H2 1

Module 2

!There is an important subtlety, form works in a Euclidean space and not Minskowkien. Most of the time it
does not change anything because we do not work with the components of the vectors, form transforms into a
scalar product and it is up to the user to give it a value. However, when working with s, ¢ factors are missing

*

L R = (d_(alphal, alpha2)—[k+q](alphal)*[k+q](alpha2)/Mw"2
—k(alphal)*k(alpha2)/Mw"2+k(alphal)*[k+q](alpha2)*k.[kt+q]/Mw' 4);

.sort

*

* Definition of the different propagators : DO = k.k — Mw"2,

x D1 = [kipl].[kt+pl] — Mw" 2,

x D2 = [ktp2].[k+p2] — Mw™ 2, D3 = [k+q].[k+tq] — Mw"2

* One tries to reconstruct, in the numerator, the different propagators
*

*

First diagram : 1/D0/D1/D3

*

hide M1,M2,M3,R;

L T1 = MIxR;

id [k+q] = [kt+pl]+p2;

id p2.p2 = 0;

id k.[k+pl] = Dl-k.plMw"2;

id pl.[k+pl] = k.pl;

id p2.[k+pl] = k.p2+pl.p2;

id k.k = D1-2«k.plMw" 2;

id [k+pl](mu2?) = k(mu2)+pl(mu2);
id pl(mul) = 0;

This module concerns the diagram 77, the strategy is to make D1 appear in the numerator.
On line 44, with the command hide, we hide the expressions M1, M2, M3 and R, that is to say
that these expressions are not destroyed, but form no longer works with them.

With the command id, we replace a quantity with an expression, for example line 46, id
p2.p2 = 0 will replace in all expressions in memory (not hidden) the scalar product p2.p2 by
zero. Note that the replacement rules are only valid for a module. Line 52, we use a wildcard
id [k + p1] (mu2?) = K(mu2) + pl(mu2); which means whatever the index mu2, we replace
[k + p1] by k + p1 (attention mu2 must be declared as Index).

On line 56, the command b D1; (b for braket) allows you to write the expressions by
ordering them according to the powers of D1. Line 57, the command print writes the active
expressions (we can obviously specify to write only certain expressions!).

Module 3

id p2(mu2) = 0;

id [k+pl].[k+pl] = D1 + Mw"2;
b D1;

print;

.sort

*

x Second diagram : 1/D0/D2/D3
*
hide T1:

L T2 = M2xR;

id [k+q] = [k+p2]+pl;

id pl.pl = 0;

id k.[kip2] = D2-k.p2+Mw" 2;
id p2.[k+p2] = k.p2;

ot [N w

P B B |

[=]

s |
0

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110

id pl.[k+p2] = k.pl4pl.p2;

id k.k = D2—2+k. p2+Mw" 2:

id [k+p2](mul?) = k(mul)+p2(mul);
id pl(mul) = 0;

Same thing for the T, diagram, this time we try to make D2 appear in the numerator.

Module 4

id p2(mu2) = 0;

id [k+p2].[k+p2] = D2 + Mw"2;
b D2;

print;

.sort

»

* Third diagram : 1/D0/D3
*

hide T2;

L T3 = M3xR;

id [k+q] = k+pl4p2;

id pl(mul) = 0;

For the diagram T3, there is no reason to make appear a propagator in the numerator.

Module 5

The coefficients A, B and C are built such that:
Tot (mul ,mu2) = A/pl.p2xpl (mu2)*p2(mul) + B/pl.p2*pl(mul)*p2(mu2)
+ Cxd_-(mul,mu2)

* X X X -

*
Symbol [1/(n—-2)];

drop MI1,M2,M3,R;

hide T3;

L Tot = (T1/D1+T2/D2+T3)/D0/D3;

* Uncomment this line

*L C = 1/2%(d_(mul,mu2)*xTot—pl (mu2)*p2(mul)*xTot/pl.p2

* —pl (mul)*p2(mu2)*Tot/pl.p2);

x and comment the following line for a computation in four dimension
LC=1[1/(n=2)]%(d_(mul,mu2)*Tot—pl (mu2)*p2(mul)=*Tot/pl.p2
—pl(mul)*p2(mu2)*Tot/pl.p2);

comment

L B = pl(mu2)*p2(mul)*Tot/pl.p2-C;

%
@
—
=
o

At line 95, the command drop permanently deletes the expressions listed.
We construct the coefficients A, B and C' as defined by the equations (10.19), (10.20) and

111
112
113
114
115
116
117
118
119

120

(10.21).

Module 6
L A = pl(mul)x*p2(mu2)*Tot/pl.p2-C;
id pl.pl = 0;
id p2.p2 = 0;
id pl(mul) = 0;

id p2(mu2) = 0;

b D1,D2,D0,D3;
print;

sort

drop Tot;

id k.k = D0 4+ Mw"2;

Here we use that form does not replace the denominator, on line 115 for example, we express
D1 in terms of other propagators to reduce terms of the type D7 /(Dy Ds).

Module 7

id k.pl = (D1-D0)/2;

id k.p2 = (D2-D0)/2;

id D1 = D3-D2+D0—2xpl.p2;

id DO = D14+D2-D3+2xpl.p2;

id D2 = D3-DI14+D0—-2+pl.p2;

b D1,D2,D0,D3;

print;

.sort

*

* The integrals over the terms containing one propagator are the same
x (it is sufficient to shift k)
*

CFunction f;

id DO"—1«D1"—1«D3"—1 = £(0,1,3);
id D0"—1«D2"—-1«D3"—1 = £(0,2,3);
id D0"—1«D3"—-1 = £(0,3);

id D1"—1«D3"-1 = {(1,3);

id D2"—1«D3"—1 = f(2,3);

id D0"—1 = £(0);

id D1"—=1 = f(1);

id D2"—-1 = {(2);

We introduce a comutting function f (defined with CFunction). Note that in form a func-
tion is just an object which obeys certain rules, we don’t have to define it as in C++ for example.
Therefore, the number of arguments of the function is not specified. Note also that the order
of lines 126-134 matters!

Module 8

id D3"—1 = f(3);

143
144
145
146
147
148
149
150
151

152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168

169
170
171
172
173
174
175
176
177
178
179

180

181
182

183

id £(3) = £(0);
id £(2) = £(0);

id f(1) = £(0);

id £(0,2,3) = £(0,1,3);

b f;

print;

.sort

*

x Check of the transversality

x the coefficient B plays no role

Module 9

of a term which vanishes when
one can check that C = —-A, it
(d-(mul,mu2)—pl (mu2)*p2(mul)/p

* % ¥

*
hide A,B,C;
L test = CHA;

print;

.sort

*

x J(z) is the integral define in
* K= 1/(4 \pi) {n/2} \Gamma(3—n
*

Symbol [2—n /2] ,Mh,zw ,K;
CFunction J,It In;
unhide A ;B,C;

drop A, test;

because it 1is the
it is contracted with
remains a factor
1.p2)

the g+g —> H notes

/2)

coefficient

polarisation

Line 159, the command unhide activates the following expression list.

));

Module 10

id n=2%(2—[2-n/2]);

id £(0,1,3) = KxJ(zw)/Mw"2;

id £(0,3) = K«(1/[2—n/2]—T1t (zw));
id £(1,3) = K«(1/[2—n/2]—1In (Mw"2
id (2,3) = K«(1/[2—n/2]—1n (Mw" 2

b K,J,[2—n/2];

print;

.sort

*

* The divergences drop out and one can take
*x zw = Mw"2/Mh"2

*

Module 11

id [2—n/2]=0;
id [1/(n-2)]=1/2;
id pl.p2 = Mh"2/2;

));

safely n=4

vectors ,

152 id Mh"2=Mw"2/zw;

185 b K,J;
16 print;
187 .sort

To support the remark (1) of the subsection 10.4.1, we can uncomment lines 5 and 98-99
and comment on lines 6 and 100-101 and run the program again, we will then notice that the
result is very different!

